图书介绍
scikit-learn机器学习PDF|Epub|txt|kindle电子书版本下载
- (美)加文·海克(Gavin Hackeling)著 著
- 出版社: 北京:人民邮电出版社
- ISBN:9787115503404
- 出版时间:2019
- 标注页数:199页
- 文件大小:22MB
- 文件页数:216页
- 主题词:机器学习
PDF下载
下载说明
scikit-learn机器学习PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 机器学习基础1
1.1定义机器学习1
1.2从经验中学习2
1.3机器学习任务3
1.4训练数据、测试数据和验证数据4
1.5偏差和方差6
1.6 scikit-learn简介8
1.7安装scikit-learn8
1.7.1使用pip安装9
1.7.2在Windows系统下安装9
1.7.3在Ubuntu 16.04系统下安装10
1.7.4在Mac OS系统下安装10
1.7.5安装Anaconda10
1.7.6验证安装10
1.8安装pandas、Pillow、NLTK和matplotlib11
1.9小结11
第2章 简单线性回归12
2.1简单线性回归12
2.1.1用代价函数评价模型的拟合性15
2.1.2求解简单线性回归的OLS17
2.2评价模型19
2.3小结21
第3章 用K-近邻算法分类和回归22
3.1 K-近邻模型22
3.2惰性学习和非参数模型23
3.3 KNN模型分类23
3.4 KNN模型回归31
3.5小结36
第4章 特征提取37
4.1从类别变量中提取特征37
4.2特征标准化38
4.3从文本中提取特征39
4.3.1词袋模型39
4.3.2停用词过滤42
4.3.3词干提取和词形还原43
4.3.4 tf-idf权重扩展词包45
4.3.5空间有效特征向量化与哈希技巧48
4.3.6词向量49
4.4从图像中提取特征52
4.4.1从像素强度中提取特征53
4.4.2使用卷积神经网络激活项作为特征54
4.5小结56
第5章 从简单线性回归到多元线性回归58
5.1多元线性回归58
5.2多项式回归62
5.3正则化66
5.4应用线性回归67
5.4.1探索数据67
5.4.2拟合和评估模型69
5.5梯度下降法72
5.6小结76
第6章 从线性回归到逻辑回归77
6.1使用逻辑回归进行二元分类77
6.2垃圾邮件过滤79
6.2.1二元分类性能指标81
6.2.2准确率82
6.2.3精准率和召回率83
6.2.4计算F1值84
6.2.5 ROCAUC84
6.3使用网格搜索微调模型86
6.4多类别分类88
6.5多标签分类和问题转换93
6.6小结97
第7章 朴素贝叶斯98
7.1贝叶斯定理98
7.2生成模型和判别模型100
7.3朴素贝叶斯100
7.4在scikit-learn中使用朴素贝叶斯102
7.5小结106
第8章 非线性分类和决策树回归107
8.1决策树107
8.2训练决策树108
8.2.1选择问题109
8.2.2基尼不纯度116
8.3使用scikit-learn类库创建决策树117
8.4小结120
第9章 集成方法:从决策树到随机森林121
9.1套袋法121
9.2推进法124
9.3堆叠法126
9.4小结128
第10章 感知机129
10.1感知机129
10.1.1激活函数130
10.1.2感知机学习算法131
10.1.3使用感知机进行二元分类132
10.1.4使用感知机进行文档分类138
10.2感知机的局限性139
10.3小结140
第11章 从感知机到支持向量机141
11.1核与核技巧141
11.2最大间隔分类和支持向量145
11.3用scikit-learn分类字符147
11.3.1手写数字分类147
11.3.2自然图片字符分类150
11.4小结152
第12章 从感知机到人工神经网络153
12.1非线性决策边界154
12.2前馈人工神经网络和反馈人工神经网络155
12.3多层感知机155
12.4训练多层感知机157
12.4.1反向传播158
12.4.2训练一个多层感知机逼近XOR函数162
12.4.3训练一个多层感知机分类手写数字164
12.5小结165
第13章 K-均值算法166
13.1聚类166
13.2 K-均值算法168
13.2.1局部最优值172
13.2.2用肘部法选择K值173
13.3评估聚类176
13.4图像量化178
13.5通过聚类学习特征180
13.6小结184
第14章 使用主成分分析降维185
14.1主成分分析185
14.1.1方差、协方差和协方差矩阵188
14.1.2特征向量和特征值190
14.1.3进行主成分分析192
14.2使用PCA对高维数据可视化194
14.3使用PCA进行面部识别196
14.4小结199