图书介绍
功能薄膜与功能材料 新概念与新技术PDF|Epub|txt|kindle电子书版本下载
![功能薄膜与功能材料 新概念与新技术](https://www.shukui.net/cover/63/32336112.jpg)
- 时东陆主编 著
- 出版社: 北京:清华大学出版社
- ISBN:7302059039
- 出版时间:2002
- 标注页数:440页
- 文件大小:35MB
- 文件页数:463页
- 主题词:
PDF下载
下载说明
功能薄膜与功能材料 新概念与新技术PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Membrane Thin Film Preparation and Applications&Naotsugu Itoh1
1.1 Introduction1
1.1.1 General Aspects1
1.1.2 Roles of Membrane1
1.2 Preparation of Ceramic Membranes4
1.2.1 Sol-Gel Process for Meso-and Micro-porous Membranes4
1.2.2 Solid-State Synthesis for Mixed Conductor6
1.2.3 Hydrothermal Process for Zeolite Membrane9
1.2.4 Anodizing Process for Porous Membrane with Straight Pores11
1.3 Preparation of Metal Membranes14
1.3.1 Electroless Plating15
1.3.2 Electroplating17
1.3.3 CVD Process17
1.3.4 Sputtering19
1.3.5 Rapid Quenching22
1.4 Applications to Separations and Reactions25
1.4.1 Microfiltrations and Ultrafiltrations26
1.4.2 Gas Separations28
1.4.2.1 Knudsen Regime28
1.4.2.2 Surface Diffusion Regime29
1.4.2.3 Capillary Condensation Regime30
1.4.2.4 Activated Diffusion Regime31
1.4.2.5 Molecular Sieving Regime31
1.4.2.6 Dissociative Solution and Diffusion Regime34
1.4.2.7 Ionic Conduction Regime39
1.4.2.8 Mixed Ionic Conduction Regime42
1.4.3 Membrane Reactors44
1.4.3.1 Catalytic Membrane Reactor44
1.4.3.2 Membrane Reactor without Catalyst45
1.4.3.3 Catalyst-packed Membrane Reactor46
1.4.4 Reaction Coupling in Membrane Reactors48
1.4.5 Fuel Cells49
1.5 Summary49
References50
2 Sol-Gel Thin Films Synthesis and Properties of Sorbents and Catalysts&Y.S.Lin53
2.1 Introduction53
2.1.1 Catalysts and Adsorbents53
2.1.2 Sol-Gel Process55
2.2 Sol-Gel Derived Materials for Adsorbents and Catalysts58
2.2.1 Crystalline Materials58
2.2.2 Noncrystalline Materials61
2.3 Sol-Gel Granulation Process65
2.3.1 Granulation Processes65
2.3.2 Sol-Gel Preparation of Alumina Granular Particles67
2.3.3 Physical Properties70
2.4 Sol-Gel-Derived Granular Adsorbents/Catalysts74
2.4.1 Synthesis of Adsorbents/Catalysts74
2.4.2 Sorption Properties78
2.5 Conclusions82
References83
3 Ferroelectric Thin Films and Applications&Cuozhong Cao86
3.1 Introduction86
3.2 Charge Displacement and Spontaneous Polarization87
3.3 Hysteresis91
3.4 The Curie Point and the Phase Transition94
3.5 Ferroelectric Thin Films for DRAM and NvRAM97
3.6 Deposition of Ferroelectric Thin Films103
3.7 Summary109
References110
4 Metalorganic Chemical Vapor Deposition of Ferroelectric Thin Films&RenXu114
4.1 Overview of Precursor Compounds114
4.1.1 Background114
4.1.2 Precursor Preparations116
4.1.3 Recent Advances117
4.1.4 Ultimate Role of Precursor Compound122
4.2 Theoretical Possibility of Autostoichiometric Vapor Deposition122
4.2.1 Stoichiometry of MOCVD122
4.2.2 Autostoichiometric Vapor Deposition125
4.2.3 Examples of Precursors125
4.2.4 Autostoichiometric Reactions126
4.2.5 Deposition Apparatus128
4.2.6 Mass Flow and Rate Analysis129
4.2.7 Stoichiometry Factor130
4.3 Stoichiometry of Vaporization Processes132
4.3.1 Background132
4.3.2 Physical Chemistry of Evaporation Processes134
4.3.3 Experimental Assessment of Evaporation Stoichiometry136
4.3.3.1 Vapor Pressure Measurement136
4.3.3.2 Sublimation/Distillation136
4.3.3.3 Composition Analysis and Decomposition Equilibrium137
4.3.3.4 Deposition of Multicomponent Oxide Thin Films138
4.3.4 Experimental Results138
4.3.4.1 Thermal Stability of Double Alkoxides139
4.3.4.2 Resolved Vapor Pressure of Double Alkoxides140
4.4 Autostoichiometric Vapor Deposition141
4.4.1 Deposition of LiTaO3 from LiTa(i-OC4H9)6141
4.4.2 Deposition of LiNbO3 from LiNb(n-OC4H9)6144
4.4.3 Deposition of LiTaO3 from LiTa(n-OC4H9)6146
4.4.3.1 Experimental147
4.4.3.2 Results149
References156
5 Functional Nanocomposite Thin Films by Co-Sputtering&FengNiu159
5.1 Introduction159
5.2 Classification of Nanocomposite Films,Their Properties and Applications160
5.3 Optical Properties of Small Particles Embedded in Different Matrixes164
5.3.1 Definition of the Optical Constants of Matter164
5.3.2 Classic Mie Theory for Scattering and Absorption of Small Spherical Particles165
5.3.2.1 General Formula165
5.3.2.2 Small Spherical Particles167
5.3.2.3 Concentric Particles(Coated Spheres or Composite Spheres)168
5.3.3 Simulation of Optical Properties of Nanocomposite Materials by the Effective-Medium Theories(EMTs)168
5.3.3.1 Introduction168
5.3.3.2 Various Effective-Medium Theories and Random Unit Cells(RUCs)169
5.3.3.3 Limitation of the Effective-Medium Theories172
5.3.4 The Bergman-Milton Theory of the"Bounds"on the Dielectric Constant of Inhomogeneous Media176
5.3.5 Optical Properties of Metals in the Near UV,Visible and Near IR Regions177
5.3.5.1 Determination of the Dielectric Function of Small Metal Particles177
5.3.5.2 The Surface Plasma Resonance Absorption(PRA)on Small Metal Particles178
5.3.5.3 Limitation of the Mean Free Path(MFP)by Small Particle Boundary Scattering178
5.3.5.4 Optical Properties of Pure Metals179
5.4 Electronic Transport Characteristics of Nanocomposites183
5.4.1 Electronic Transport Properties in Amorphous Semiconductors183
5.4.2 Electronic Transport in Granular Metal Films(Cermet Films)185
5.4.2.1 Conductivity in the Metallic Regime186
5.4.2.2 Conductivity in the Dielectric Regime187
5.4.3 Electronic Transport in Metal/Semiconductor Systems189
5.4.3.1 Schottky Barrier(SB)Contact189
5.5 Quantum Size Effects of Small Metal Particles190
5.5.1 Introduction190
5.5.2 Quantum Size Effect(QSE)on the Optical Properties of Small Metal Particles192
5.6 Preparation of Nanocomposite Thin Film by Co-Sputtering193
5.7 Microstructure,Optical and Electronic Transport Properties of Si-Ag Nanocomposite Thin Films195
5.7.1 Introduction195
5.7.2 Determination of the Film Composition,Thickness and Mean Ag Particle Size196
5.7.3 Microstructural Characterization197
5.7.3.1 X-ray Diffraction(XRD)197
5.7.3.2 Conventional TEM Results198
5.7.3.3 HREM Results201
5.7.4 The Effect of Substrate Temperature203
5.7.5 Optical Properties in the Near UV,Visible and Near IR203
5.7.5.1 Optical Absorption in the Near UV,Visible and Near IR203
5.7.5.2 The Effects of Substrate Temperature203
5.7.5.3 Determination of Optical Constants of the Thick Film at 632.8nm203
5.7.6 Electronic Transport Properties206
5.7.6.1 Sheet Resistance of the Thin Films as a Function of Ag Content206
5.7.6.2 Sheet Resistance as a Function of Temperature207
5.7.7 Discussion209
5.7.7.1 Simulations of Optical Absorption by the Different EMTs209
5.7.7.2 Electronic Transport Properties213
References216
6 Strength and Toughness of Functional Ceramic Matrix&Yongjian Sun219
6.1 Introduction219
6.2 Overview of Composite Technologies221
6.2.1 Mechanical and Inteffacial Behavior of FCMCs223
6.2.1.1 Mechanical Behavior of FCMCs223
6.2.1.2 Fundamentals of Fiber/Matrix Interface225
6.2.2 Processing of Ceramic Matrix Composites229
6.2.2.1 Diversity of Processing Methods229
6.2.2.2 Processing Methods for Glass Composites231
6.2.3 Strengthening and Toughening Mechanisms in FCMCs232
6.2.3.1 Mechanisms of Strengthening in FCMCs232
6.2.3.2 Mechanisms of Toughening in FCMCs238
6.3 Objectives and Approaches249
6.4 An Unconventional Process of Glass Composites250
6.4.1 Fabrication of Glass Composites250
6.4.1.1 Selection of Materials250
6.4.1.2 Fabrication Procedures251
6.4.2 Microstructure of Composites253
6.4.2.1 Density,Uniformity and Transparency of Composites253
6.4.2.2 Influences of Processing Parameters255
6.4.3 Testing Techniques257
6.5 Mechanical and Interfacial Properties of Composites260
6.5.1 Mechanical Behavior of Composites260
6.5.1.1 Load-Displacement Responeses261
6.5.1.2 Mechanical Properties of Glass and Composites261
6.5.2 Fiber/Matrix Interfacial Properties265
6.5.2.1 Fiber Pushout Tests265
6.5.2.2 Measurement of Matrix Crack Spacing270
6.6 Micromechanisms of Multiple Matrix Cracking and Interfacial Debonding271
6.6.1 In-situ Analysis of Matrix Cracking and Interfacial Debonding271
6.6.1.1 Multiple Matrix Cracking273
6.6.1.2 Interfacial Debonding275
6.6.1.3 Interaction between the Matrix Cracks and Interfacial Debond277
6.6.2 A New Theoretical Model for Interfacial Debonding279
6.6.2.1 Stress Distribution in a Composite Unit280
6.6.2.2 Displacement Calculations281
6.6.2.3 Energy Balance Approach for Bridging-Stress Calculation282
6.7 A Novel Technique for Studying Fiber Reinforcement287
6.7.1 Determination of Fiber-Bridging Stress by Debond Length Measurement287
6.7.1.1 Techniques for Determining Fiber-Bridging Stress288
6.7.1.2 Debond Length and COD Profiles290
6.7.1.3 Predicted and Measured COD Profiles292
6.7.1.4 Fiber-Bridging Stress Distributions294
6.7.2 Contribution of Fiber-Bridging to Fracture Toughness297
6.7.2.1 SENB Test,DLM and COD Measurements297
6.7.2.2 Debond Length and COD Profiles298
6.7.2.3 Determination of Fiber-Bridging Stress300
6.7.2.4 Determination of Fracture Toughness304
6.8 Summary307
References308
7 Applications of HRTEM in Functional Materials&Xiaojing Wu312
7.1 Theory of High Resolution Transmission Electron Microscopy(HRTEM)312
7.1.1 Phase Contrast312
7.1.2 Weak-Phase Object Approximation315
7.1.3 Multislice Method317
7.1.4 Pseudo-Weak-Phase Object Approximation319
7.1.5 Resolving Power of Phase Contrast320
7.1.5.1 Point-to-Point Resolving Power320
7.1.5.2 Information Limit321
7.1.5.3 Line Resolving Power321
7.2 What Can be Achieved by HRTEM?322
7.2.1 Crystal Structure Determination322
7.2.2 Microstructure and Defect Observation325
7.2.3 Thin Film Structure Observation325
7.3 Specimen Preparation326
7.3.1 Crushing Method326
7.3.2 Ion-Milling Method327
7.3.3 Electropolishing Method328
7.4 Applications of HRTEM for High Tc Superconducting Cuprates328
7.4.1 Structure Determination of(Hg,Tl)2Ba2(Hg,Tl)Cu2Oy in a Multiphase Sample330
7.4.2 Superstructure Formed by Oxygen Vacancies in(Bi,Pb)-2223335
7.4.3 Modulation Structure Determination for"Pb"-1212 and"Pb"-1223340
7.5 New Developments in HRTEM349
References351
8 Applications of Convergent-Beam Electron Diffraction in Materials Microcharacterization&Renhui Wang and Huamin Zou354
8.1 Introduction354
8.2 Experimental Technique355
8.3 Convergent-Beam Electron Diffraction under Two-Beam Dynamic Condition—Determination of Foil Thickness and Extinction Distance359
8.3.1 Two-Beam Dynamic Theory of Electron Diffraction359
8.3.2 CBED Determination of Rocking Curves361
8.3.3 CBED Determination of Foil Thickness and Extinction Distance363
8.4 Convergent-beam Electron Diffraction under Kinematic Condition—Higher-Order Laue Zone Lines365
8.4.1 Formation of HOLZ Lines365
8.4.2 Indexing and Computer Simulation of HOLZ Line Patterns367
8.4.3 Factors Affecting the Quality of a HOLZ Line Pattern368
8.4.4 Some Applications of HOLZ Reflections and HOLZ Lines370
8.4.4.1 Determination of Lattice Constants of Micro-areas370
8.4.4.2 Determination of Crystallographic Symmetry371
8.4.4.3 Determination of Crystal Structure Parameters371
8.4.4.4 Determination of Characteristic Parameters of Defects371
8.5 Convergent-Beam Electron Diffraction Determination of Crystal Symmetry372
8.5.1 Symmetry Elements That Can Be Determined by CBED Technique372
8.5.2 Thirty One Diffraction Groups and Their CBED Determination374
8.5.3 CBED Determination of Point Groups383
8.6 Convergent-Beam Electron Diffraction Determination of Burgers Vectors of Dislocations in Crystals and Quasicrystals383
8.6.1 Twisting Direction of a Reflection Fringe Induced by a Dislocation Line383
8.6.2 Number of Nodes in the Split Reflection Fringes Induced by a Dislocation Line387
8.6.3 Defocus CBED Technique for Determining Burgers Vectors of Dislocations in Crystals388
8.6.4 Defocus CBED Technique for Determining Burgers Vectors of Dislocations in Quasicrystals391
8.7 Convergent-Beam Electron Diffraction Determination of Crystal Structures393
8.7.1 Many-Beam Dynamic Theory of Electron Diffraction393
8.7.2 Structure Factor Determination by Means of CBED Technique395
8.8 CBED Study of Interfacial Strain Fields397
8.8.1 Interfacial Strain Determination by Using HOLZ Line Shifting397
8.8.1.1 Factors Affecting HOLZ Line Position397
8.8.1.2 Methods for Determining Lattice Strain from HOLZ Line Shifts400
8.8.2 Interfacial Strain Determination by Using HOLZ Line Splitting405
References408
9 Numerical Simulations for Micromechanical Analyses of Fiber-Reinforced Composites,Thin Films and Coatings&Yijun Liu410
9.1 Introduction410
9.1.1 Numerical Simulations in Materials Research411
9.1.2 The Finite Element Method(FEM)412
9.1.3 The Boundary Element Method(BEM)412
9.2 Formulation of the Boundary Element Method413
9.2.1 The Governing Equations413
9.2.2 The Boundary Integral Equation Formulation414
9.3 Micromechanical Analysis of Fiber-Reinforced Composites with Interphases416
9.3.1 Review of the Research416
9.3.2 Two Unit Cell Models with the Interphase421
9.3.3 Numerical Examples424
9.3.4 Discussion429
9.4 Interface Stress Analysis of Thin Films and Coatings430
9.4.1 A Thin Film Model430
9.4.2 Thin Coatings on a Shaft431
9.4.3 Discussion433
9.5 Closing Remarks434
9.6 Acknowledgment435
References435
Index439