图书介绍
负折射和负折射率材料物理 光电性质和不同实现方法 影印版=PHYSICS OF NEGATIVE REFRACTION AND NEGATIVE LNDEX MATERIALS OPTICAL APDF|Epub|txt|kindle电子书版本下载
- (美)克罗恩(C.M.Krowne),(美)张勇(Y.Zhang)主编 著
- 出版社: 北京大学出版社
- ISBN:
- 出版时间:2012
- 标注页数:378页
- 文件大小:57MB
- 文件页数:398页
- 主题词:
PDF下载
下载说明
负折射和负折射率材料物理 光电性质和不同实现方法 影印版=PHYSICS OF NEGATIVE REFRACTION AND NEGATIVE LNDEX MATERIALS OPTICAL APDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Negative Refraction of Electromagnetic and Electronic Waves in Uniform Media&Y. Zhang and A. Mascarenhas1
1.1 Introduction1
1.1.1 Negative Refraction1
1.1.2 Negative Refraction with Spatial Dispersion3
1.1.3 Negative Refraction with Double Negativity4
1.1.4 Negative Refraction Without Left-Handed Behavior5
1.1.5 Negative Refraction Using Photonic Crystals6
1.1.6 From Negative Refraction to Perfect Lens6
1.2 Conditions for Realizing Negative Refraction and Zero Reflection8
1.3 Conclusion15
References16
2 Anisotropic Field Distributions in Left-Handed Guided Wave Electronic Structures and Negative Refractive Bicrystal Heterostructures&C.M. Krowne19
2.1 Anisotropic Field Distributions in Left-Handed Guided Wave Electronic Structures19
2.1.1 Introduction19
2.1.2 Anisotropic Green's Function Based Upon LHM or DNM Properties21
2.1.3 Determination of the Eigenvalues and Eigenvectors for LHM or DNM32
2.1.4 Numerical Calculations of the Electromagnetic Field for LHM or DNM42
2.1.5 Conclusion65
2.2 Negative Refractive Bicrystal Heterostructures66
2.2.1 Introduction66
2.2.2 Theoretical Crystal Tensor Rotations67
2.2.3 Guided Stripline Structure67
2.2.4 Beam Steering and Control Component Action67
2.2.5 Electromagnetic Fields69
2.2.6 Surface Current Distributions70
2.2.7 Conclusion72
References72
3 "Left-Handed"Magnetic Granular Composites&S.T. Chui,L.B.Hu,Z.Lin and L. Zhou75
3.1 Introduction75
3.2 Description of"Left-Handed"Electromagnetic Waves:The Effect of the Imaginary Wave Vector76
3.3 Electromagnetic Wave Propagations in Homogeneous Magnetic Materials78
3.4 Some Characteristics of Electromagnetic Wave Propagation in Anisotropic"Left-Handed"Materials80
3.4.1 "Left-Handed"Characteristic of Electromagnetic Wave Propagation in Uniaxial Anisotropic"Left-Handed"Media80
3.4.2 Characteristics of Refraction of Electromagnetic Waves at the Interfaces of Isotropic Regular Media and Anisotropic"Left-Handed"Media85
3.5 Multilayer Structures Left-Handed Material:An Exact Example88
References93
4 Spatial Dispersion,Polaritons,and Negative Refraction&V.M. Agranovich and Yu. N. Gartstein95
4.1 Introduction95
4.2 Nature of Negative Refraction:Historical Remarks97
4.2.1 Mandelstam and Negative Refraction97
4.2.2 Cherenkov Radiation100
4.3 Maxwell Equations and Spatial Dispersion102
4.3.1 Dielectric Tensor102
4.3.2 Isotropic Systems with Spatial Inversion105
4.3.3 Connection to Microscopics106
4.3.4 Isotropic Systems Without Spatial Inversion110
4.4 Polaritons with Negative Group Velocity111
4.4.1 Excitons with Negative Effective Mass in Nonchiral Media111
4.4.2 Chiral Systems in the Vicinity of Excitonic Transitions114
4.4.3 Chiral Systems in the Vicinity of the Longitudinal Frequency116
4.4.4 Surface Polaritons118
4.5 Magnetic Permeability at Optical Frequencies121
4.5.1 Magnetic Moment of a Macroscopic Body122
4.6 Related Interesting Effects127
4.6.1 Generation of Harmonics from a Nonlinear Material with Negative Refraction127
4.6.2 Ultra-Short Pulse Propagation in Negative Refraction Materials128
4.7 Concluding Remarks129
References130
5 Negative Refraction in Photonic Crystals&W.T. Lu,P. Vodo,and S. Sridhar133
5.1 Introduction133
5.2 Materials with Negative Refraction134
5.3 Negative Refraction in Microwave Metallic Photonic Crystals135
5.3.1 Metallic PC in Parallel-Plate Waveguide135
5.3.2 Numerical Simulation of TM Wave Scattering140
5.3.3 Metallic PC in Free Space141
5.3.4 High-Order Bragg Waves at the Surface of Metallic Photonic Crystals144
5.4 Conclusion and Perspective145
References146
6 Negative Refraction and Subwavelength Focusing in Two-Dimensional Photonic Crystals&E. Ozbay and G. Ozkan149
6.1 Introduction149
6.2 Negative Refraction and Subwavelength Imaging of TM Polarized Electromagnetic Waves150
6.3 Negative Refraction and Point Focusing of TE Polarized Electromagnetic Waves154
6.4 Negative Refraction and Focusing Analysis for a Metallodielectric Photonic Crystal157
6.5 Conclusion162
References163
7 Negative Refraction and Imaging with Quasicrystals&X. Zhang,Z. Feng,Y. Wang,Z.-Y.Li,B. Cheng and D.-Z.Zhang167
7.1 Introduction167
7.2 Negative Refraction by High-Symmetric Quasicrystal168
7.3 Focus and Image by High-Symmetric Quasicrystal Slab172
7.4 Negative Refraction and Focusing of Acoustic Wave by High-Symmetric Quasiperiodic Phononic Crystal179
7.5 Summary180
References181
8 Generalizing the Concept of Negative Medium to Acoustic Waves&J. Li,K.H. Fung,Z.Y. Liu,P. Sheng and C.T. Chan183
8.1 Introduction183
8.2 A Simple Model186
8.3 An Example of Negative Mass190
8.4 Acoustic Double-Negative Material193
8.4.1 Construction of Double-Negative Material by Mie Resonances197
8.5 Focusing Effect Using Double-Negative Acoustic Material205
8.6 Focusing by Uniaxial Effective Medium Slab205
References215
9 Experiments and Simulations of Microwave Negative Refraction in Split Ring and Wire Array Negative Index Materials,2D Split-Ring Resonator and 2D Metallic Disk Photonic Crystals&F.J. Rachford,D.L. Smith and P.F. Loschialpo217
9.1 Introduction217
9.2 Theory219
9.3 FDTD Simulations in an Ideal Negative Index Medium220
9.4 Simulations and Experiments with Split-Ring Resonators and Wire Arrays223
9.5 Split-Ring Resonator Arrays as a 2D Photonic Crystal226
9.6 Hexagonal Disk Array 2D Photonic Crystal Simulations:Focusing231
9.7 Modeling Refraction Through the Disk Medium236
9.8 Hexagonal Disk Array Measurements-Transmission and Focusing240
9.9 Hexagonal Disk Array Measurements-Refraction242
9.10 Conclusions248
References248
10 Super Low Loss Guided Wave Bands Using Split Ring Resonator-Rod Assemblies as Left-Handed Materials C.M.Krowne251
10.1 Introduction251
10.2 Metamaterial Representation252
10.3 Guiding Structure255
10.4 Numerical Results257
10.5 Conclusions258
References259
11 Development of Negative Index of Refraction Metamaterials with Split Ring Resonators and Wires for RF Lens Applications&C.G. Parazzoli,R.B. Greegor and M.H. Tanielian261
11.1 Electromagnetic Negative Index Materials261
11.1.1 The Physics of NIMs262
11.1.2 Design of the NIM Unit Cell264
11.1.3 Origin of Losses in Left-Handed Materials266
11.1.4 Reduction in Transmission Due to Polarization Coupling270
11.1.5 The Effective Medium Limit272
11.1.6 NIM Indefinite Media and Negative Refraction272
11.2 Demonstration of the NIM Existence Using Snell's Law277
11.3 Retrieval of εeff and μeff from the Scattering Parameters281
11.3.1 Homogeneous Effective Medium282
11.3.2 Lifting the Ambiguities283
11.3.3 Inversion for Lossless Materials286
11.3.4 Periodic Effective Medium287
11.3.5 Continuum Formulation288
11.4 Characterization of NIMs289
11.4.1 Measurement of NIM Losses289
11.4.2 Experimental Confirmation of Negative Phase Shift in NIM Slabs290
11.5 NIM Optics295
11.5.1 NIM Lenses and Their Properties295
11.5.2 Aberration Analysis of Negative Index Lenses296
11.6 Design and Characterization of Cylindrical NIM Lenses299
11.6.1 Cylindrical NIM Lens in a Waveguide300
11.7 Design and Characterization of Spherical NIM Lenses305
11.7.1 Characterization of the Empty Aperture305
11.7.2 Design and Characterization of the PIM lens307
11.7.3 Design and Characterization of the NIM Lens308
11.7.4 Design and Characterization of the GRIN Lens311
11.7.5 Comparison of Experimental Data for Empty Aperture,PIM,NIM,and GRIN Lenses314
11.7.6 Comparison of Simulated and Experimental Aberrations for the PIM,NIM,and GRIN Lenses317
11.7.7 Weight Comparison Between the PIM,NIM,and GRIN Lenses327
11.8 Conclusion327
References328
12 Nonlinear Effects in Left-Handed Metamaterials&I.V. Shadrivov and Y.S. Kivshar331
12.1 Introduction331
12.2 Nonlinear Response of Metamaterials333
12.2.1 Nonlinear Magnetic Permeability334
12.2.2 Nonlinear Dielectric Permittivity336
12.2.3 FDTD Simulations of Nonlinear Metamaterial337
12.2.4 Electromagnetic Spatial Solitons340
12.3 Kerr-Type Nonlinear Metamaterials343
12.3.1 Nonlinear Surface Waves343
12.3.2 Nonlinear Pulse Propagation and Surface-Wave Solitons349
12.3.3 Nonlinear Guided Waves in Left-Handed Slab Waveguide351
12.4 Second-Order Nonlinear Effects in Metamaterials355
12.4.1 Second-Harmonics Generation355
12.4.2 Enhanced SHG in Double-Resonant Metamaterials363
12.4.3 Nonlinear Quadratic Flat Lens367
12.5 Conclusions369
References370
Index373