图书介绍

曲面几何学 英文版PDF|Epub|txt|kindle电子书版本下载

曲面几何学 英文版
  • JohnStillwell著 著
  • 出版社: 世界图书北京出版公司
  • ISBN:9787510005312
  • 出版时间:2010
  • 标注页数:216页
  • 文件大小:10MB
  • 文件页数:230页
  • 主题词:曲面论-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

曲面几何学 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1.The Euclidean Plane1

1.1 Approaches to Euclidean Geometry1

1.2 Isometries2

1.3 Rotations and Reflections5

1.4 The Three Reflections Theorem9

1.5 Orientation-Reversing Isometries11

1.6 Distinctive Features of Euclidean Geometry14

1.7 Discussion18

Chapter 2.Euclidean Surfaces21

2.1 Euclid on Manifolds21

2.2 The Cylinder22

2.3 The Twisted Cylinder25

2.4 The Torus and the Klein Bottle26

2.5 Quotient Surfaces29

2.6 A Nondiscontinuous Group33

2.7 Euclidean Surfaces34

2.8 Covering a Surface by the Plane36

2.9 The Covering Isometry Group39

2.10 Discussion41

Chapter 3.The Sphere45

3.1 The Sphere S2 in R345

3.2 Rotations48

3.3 Stereographic Projection50

3.4 Inversion and the Complex Coordinate on the Sphere52

3.5 Reflections and Rotations as Complex Functions56

3.6 The Antipodal Map and the Elliptic Plane60

3.7 Remarks on Groups,Spheres and Projective Spaces63

3.8 The Area of a Triangle65

3.9 The Regular Polyhedra67

3.10 Discussion69

Chapter 4.The Hyperbolic Plane75

4.1 Negative Curvature and the Half-Plane75

4.2 The Half-Plane Model and the Conformal Disc Model80

4.3 The Three Reflections Theorem85

4.4 Isometries as Complex Functions88

4.5 Geometric Description of Isometries92

4.6 Classification of Isometries96

4.7 The Area of a Triangle99

4.8 The Projective Disc Model101

4.9 Hyperbolic Space105

4.10 Discussion108

Chapter 5.Hyperbolic Surfaces111

5.1 Hyperbolic Surfaces and the Killing-Hopf Theorem111

5.2 The Pseudosphere112

5.3 The Punctured Sphere113

5.4 Dense Lines on the Punctured Sphere118

5.5 General Construction of Hyperbolic Surfaces from Polygons122

5.6 Geometric Realization of Compact Surfaces126

5.7 Completeness of Compact Geometric Surfaces129

5.8 Compact Hyperbolic Surfaces130

5.9 Discussion132

Chapter 6.Paths and Geodesics135

6.1 Topological Classification of Surfaces135

6.2 Geometric Classification of Surfaces138

6.3 Paths and Homotopy140

6.4 Lifting Paths and Lifting Homotopies143

6.5 The Fundamental Group145

6.6 Generators and Relations for the Fundamental Group147

6.7 Fundamental Group and Genus153

6.8 Closed Geodesic Paths154

6.9 Classification of Closed Geodesic Paths156

6.10 Discussion160

Chapter 7.Planar and Spherical Tessellations163

7.1 Symmetric Tessellations163

7.2 Conditions for a Polygon to Be a Fundamental Region167

7.3 The Triangle Tessellations172

7.4 Poincaré's Theorem for Compact Polygons178

7.5 Discussion182

Chapter 8.Tessellations of Compact Surfaces185

8.1 Orbifolds and Desingularizations185

8.2 From Desingularization to Symmetric Tessellation189

8.3 Desingularizations as(Branched) Coverings190

8.4 Some Methods of Desingularization194

8.5 Reduction to a Permutation Problem196

8.6 Solution of the Permutation Problem198

8.7 Discussion201

References203

Index207

热门推荐