图书介绍
代数K理论及其应用 英文版PDF|Epub|txt|kindle电子书版本下载
![代数K理论及其应用 英文版](https://www.shukui.net/cover/21/30291118.jpg)
- JonathanRosenberg著 著
- 出版社: 世界图书北京出版公司
- ISBN:9787510005145
- 出版时间:2010
- 标注页数:394页
- 文件大小:19MB
- 文件页数:404页
- 主题词:代数K理论-英文
PDF下载
下载说明
代数K理论及其应用 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1.K0 of Rings1
1.Defining K01
2.K0 from idempotents7
3.K0 of PIDs and local rings11
4.K0 of Dedekind domains16
5.Relative K0 and excision27
6.An application:Swan's Theorem and topological K-theory32
7.Another application:Euler characteristics and the Wall finiteness obstruction41
Chapter 2.K1 of Rings59
1.Defining K159
2.K1 of division rings and local rings62
3.K1 of PIDs and Dedekind domains74
4.Whitehead groups and Whitehead torsion83
5.Relative K1 and the exact sequence92
Chapter 3.K0 and K1 of Categories,Negative K-Theory108
1.K0 and K1 of categories,G0 and G1 of rings108
2.The Grothendieck and Bass-Heller-Swan Theorems132
3.Negative K-theory153
Chapter 4.Milnor's K2162
1.Universal central extensions and H2162
Universal central extensions163
Homology of groups168
2.The Steinberg group187
3.Milnor's K2199
4.Applications of K2218
Computing certain relative K1 groups218
K2 of fields and number theory221
Almost commuting operators237
Pseudo-isotopy240
Chapter 5.The+-Construction and Quillen K-Theory245
1.An introduction to classifying spaces245
2.Quillen's+-construction and its basic properties265
3.A survey of higher K-theory279
Products279
K-theory of fields and of rings of integers281
The Q-construction and results proved with it289
Applications295
Chapter 6.Cyclic homology and its relation to K-Theory302
1.Basics of cyclic homology302
Hochschild homology302
Cyclic homology306
Connections with"non-commutative de Rham theory"325
2.The Chern character331
The classical Chern character332
The Chern character on K0335
The Chern character on higher K-theory340
3.Some applications350
Non-vanishing of class groups and Whitehead groups350
Idempotents in C*-algebras355
Group rings and assembly maps362
References369
Books and Monographs on Related Areas of Algebra,Analysis,Number Theory,and Topology369
Books and Monographs on Algebraic K-Theory371
Specialized References372
Notational Index377
Subject Index383