图书介绍
An Introduction To Partial Differential EquationsPDF|Epub|txt|kindle电子书版本下载
![An Introduction To Partial Differential Equations](https://www.shukui.net/cover/72/33575295.jpg)
- Yehuda Pinchover and Jacob Rubinstein 著
- 出版社: Cambridge University Press.
- ISBN:
- 出版时间:2005
- 标注页数:371页
- 文件大小:125MB
- 文件页数:381页
- 主题词:
PDF下载
下载说明
An Introduction To Partial Differential EquationsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Preliminaries1
1.2 Classification3
1.3 Differential operators and the superposition principle3
1.4 Differential equations as mathematical models4
1.5 Associated conditions17
1.6 Simple examples20
1.7 Exercises21
2 First-order equations23
2.1 Introduction23
2.2 Quasilinear equations24
2.3 The method of characteristics25
2.4 Examples of the characteristics method30
2.5 The existence and uniqueness theorem36
2.6 The Lagrange method39
2.7 Conservation laws and shock waves41
2.8 The eikonal equation50
2.9 General nonlinear equations52
2.10 Exercises58
3 Second-order linear equations in two indenpendent variables64
3.1 Introduction64
3.2 Classification64
3.3 Canonical form of hyperbolic equations67
3.4 Canonical form of parabolic equations69
3.5 Canonical form of elliptic equations70
3.6 Exercises73
4 The one-dimensional wave equation76
4.1 Introduction76
4.2 Canonical form and general solution76
4.3 The Cauchy problem and d'Alembert's formula78
4.4 Domain of dependence and region of influence82
4.5 The Cauchy problem for the nonhomogeneous wave equation87
4.6 Exercises93
5 The method of separation of variables98
5.1 Introduction98
5.2 Heat equation: homogeneous boundary condition99
5.3 Separation of variables for the wave equation109
5.4 Separation of variables for nonhomogeneous equations114
5.5 The energy method and uniqueness116
5.6 Further applications of the heat equation119
5.7 Exercises124
6 Sturm-Liouville problems and eigenfunction expansions130
6.1 Introduction130
6.2 The Sturm-Liouville problem133
6.3 Inner product spaces and orthonormal systems136
6.4 The basic properties of Sturm-Liouville eigenfunctions and eigenvalues141
6.5 Nonhomogeneous equations159
6.6 Nonhomogeneous boundary conditions164
6.7 Exercises168
7 Elliptic equations173
7.1 Introduction173
7.2 Basic properties of elliptic problems173
7.3 The maximum principle178
7.4 Applications of the maximum principle181
7.5 Green's identities182
7.6 The maximum principle for the heat equation184
7.7 Separation of variables for elliptic problems187
7.8 Poisson's formula201
7.9 Exercises204
8 Green's functions and integral representations208
8.1 Introduction208
8.2 Green's function for Dirichlet problem in the plane209
8.3 Neumann's function in the plane219
8.4 The heat kernel221
8.5 Exercises223
9 Equations in high dimensions226
9.1 Introduction226
9.2 First-order equations226
9.3 Classification of second-order equations228
9.4 The wave equation in R2 and R3234
9.5 The eigenvalue problem for the Laplace equation242
9.6 Separation of variables for the heat equation258
9.7 Separation of variables for the wave equation259
9.8 Separation of variables for the Laplace equation261
9.9 Schrodinger equation for the hydrogen atom263
9.10 Musical instruments266
9.11 Green's functions in higher dimensions269
9.12 Heat kernel in higher dimensions275
9.13 Exercises279
10 Variational methods282
10.1 Calculus of variations282
10.2 Function spaces and weak formulation296
10.3 Exercises306
11 Numerical methods309
11.1 Introduction309
11.2 Finite differences311
11.3 The heat equation: explicit and implicit schemes, stability, consistency and convergence312
11.4 Laplace equation318
11.5 The wave equation322
11.6 Numerical solutions of large linear algebraic systems324
11.7 The finite elements method329
11.8 Exercises334
12 Solutions of odd-numbered problems337
A.l Trigonometric formulas361
A.2 Integration formulas362
A.3 Elementary ODEs362
A.4 Differential operators in polar coordinates363
A.5 Differential operators in spherical coordinates363
References364
Index366