图书介绍
Channel Codes Classical and ModernPDF|Epub|txt|kindle电子书版本下载
![Channel Codes Classical and Modern](https://www.shukui.net/cover/59/34101294.jpg)
- WILLIAM E.RYAN 著
- 出版社: CAmbridge University Press
- ISBN:9780521848688
- 出版时间:2009
- 标注页数:692页
- 文件大小:313MB
- 文件页数:709页
- 主题词:
PDF下载
下载说明
Channel Codes Classical and ModernPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Coding and Capacity1
1.1 Digital Data Communication and Storage1
1.2 Channel-Coding Overview3
1.3 Channel-Code Archetype:The(7,4)Hamming Code4
1.4 Design Criteria and Performance Measures7
1.5 Channel-Capacity Formulas for Common Channel Models10
1.5.1 Capacity for Binary-Input Memoryless Channels11
1.5.2 Coding Limits for M-ary-Input Memoryless Channels18
1.5.3 Coding Limits for Channels with Memory21
Problems24
References26
2 Finite Fields,Vector Spaces,Finite Geometries,and Graphs28
2.1 Sets and Binary Operations28
2.2 Groups30
2.2.1 Basic Concepts of Groups30
2.2.2 Finite Groups32
2.2.3 Subgroups and Cosets35
2.3 Fields38
2.3.1 Definitions and Basic Concepts38
2.3.2 Finite Fields41
2.4 Vector Spaces45
2.4.1 Basic Definitions and Properties45
2.4.2 Linear Independence and Dimension46
2.4.3 Finite Vector Spaces over Finite Fields48
2.4.4 Inner Products and Dual Spaces50
2.5 Polynomials over Finite Fields51
2.6 Construction and Properties of Galois Fields56
2.6.1 Construction of Galois Fields56
2.6.2 Some Fundamental Properties of Finite Fields64
2.6.3 Additive and Cyclic Subgroups69
2.7 Finite Geometries70
2.7.1 Euclidean Geometries70
2.7.2 Projective Geometries76
2.8 Graphs80
2.8.1 Basic Concepts80
2.8.2 Paths and Cycles84
2.8.3 Bipartite Graphs86
Problems88
References90
Appendix A92
3 Linear Block Codes94
3.1 Introduction to Linear Block Codes94
3.1.1 Generator and Parity-Check Matrices95
3.1.2 Error Detection with Linear Block Codes98
3.1.3 Weight Distribution and Minimum Hamming Distance of a Linear Block Code99
3.1.4 Decoding of Linear Block Codes102
3.2 Cyclic Codes106
3.3 BCH Codes111
3.3.1 Code Construction111
3.3.2 Decoding114
3.4 Nonbinary Linear Block Codes and Reed-Solomon Codes121
3.5 Product,Interleaved,and Concatenated Codes129
3.5.1 Product Codes129
3.5.2 Interleaved Codes130
3.5.3 Concatenated Codes131
3.6 Quasi-Cyclic Codes133
3.7 Repetition and Single-Parity-Check Codes142
Problems143
References145
4 Convolutional Codes147
4.1 The Convolutional Code Archetype147
4.2 Algebraic Description of Convolutional Codes149
4.3 Encoder Realizations and Classifications152
4.3.1 Choice of Encoder Class157
4.3.2 Catastrophic Encoders158
4.3.3 Minimal Encoders159
4.3.4 Design of Convolutional Codes163
4.4 Alternative Convolutional Code Representations163
4.4.1 Convolutional Codes as Semi-Infinite Linear Codes164
4.4.2 Graphical Representations for Convolutional Code Encoders170
4.5 Trellis-Based Decoders171
4.5.1 MLSD and the Viterbi Algorithm172
4.5.2 Differential Viterbi Decoding177
4.5.3 Bit-wise MAP Decoding and the BCJR Algorithm180
4.6 Performance Estimates for Trellis-Based Decoders187
4.6.1 ML Decoder Performance for Block Codes187
4.6.2 Weight Enumerators for Convolutional Codes189
4.6.3 ML Decoder Performance for Convolutional Codes193
Problems195
References200
5 Low-Density Parity-Check Codes201
5.1 Representations of LDPC Codes201
5.1.1 Matrix Representation201
5.1.2 Graphical Representation202
5.2 Classifications of LDPC Codes205
5.2.1 Generalized LDPC Codes207
5.3 Message Passing and the Turbo Principle208
5.4 The Sum-Product Algorithm213
5.4.1 Overview213
5.4.2 Repetition Code MAP Decoder and APP Processor216
5.4.3 Single-Parity-Check Code MAP Decoder and APP Processor217
5.4.4 The Gallager SPA Decoder218
5.4.5 The Box-Plus SPA Decoder222
5.4.6 Comments on the Performance of the SPA Decoder225
5.5 Reduced-Complexity SPA Approximations226
5.5.1 The Min-Sum Decoder226
5.5.2 The Attenuated and Offset Min-Sum Decoders229
5.5.3 The Min-Sum-with-Correction Decoder231
5.5.4 The Approximate Min* Decoder233
5.5.5 The Richardson/Novichkov Decoder234
5.5.6 The Reduced-Complexity Box-Plus Decoder236
5.6 Iterative Decoders for Generalized LDPC Codes241
5.7 Decoding Algorithms for the BEC and the BSC243
5.7.1 Iterative Erasure Filling for the BEC243
5.7.2 ML Decoder for the BEC244
5.7.3 Gallager’s Algorithm A and Algorithm B for the BSC246
5.7.4 The Bit-Flipping Algorithm for the BSC247
5.8 Concluding Remarks248
Problems248
References254
6 Computer-Based Design of LDPC Codes257
6.1 The Original LDPC Codes257
6.1.1 Gallager Codes257
6.1.2 MacKay Codes258
6.2 The PEG and ACE Code-Design Algorithms259
6.2.1 The PEG Algorithm259
6.2.2 The ACE Algorithm260
6.3 Protograph LDPC Codes261
6.3.1 Decoding Architectures for Protograph Codes264
6.4 Multi-Edge-Type LDPC Codes265
6.5 Single-Accurnulator-Based LDPC Codes266
6.5.1 Repeat -Accumulate Codes267
6.5.2 Irregular Repeat-Accumulate Codes267
6.5.3 Generalized Accumulator LDPC Codes277
6.6 Double-Accumulator-Based LDPC Codes277
6.6.1 Irregular Repeat -Accumulate-Accumulate Codes278
6.6.2 Accumulate-Repeat-Accumulate Codes279
6.7 Accurnulator-Based Codes in Standards285
6.8 Generalized LDPC Codes287
6.8.1 A Rate-1/2 G-LDPC Code290
Problems292
References295
7 Turbo Codes298
7.1 Parallel-Concatenated Convolutional Codes298
7.1.1 Critical Properties of RSC Codes299
7.1.2 Critical Properties of the Interleaver300
7.1.3 The Puncturer301
7.1.4 Performance Estimate on the BI-AWGNC301
7.2 The PCCC Iterative Decoder306
7.2.1 Overview of the Iterative Decoder308
7.2.2 Decoder Details309
7.2.3 Summary of the PCCC Iterative Decoder313
7.2.4 Lower-Complexity Approximations316
7.3 Serial-Concatenated Convolutional Codes320
7.3.1 Performance Estimate on the BI-AWGNC320
7.3.2 The SCCC Iterative Decoder323
7.3.3 Summary of the SCCC Iterative Decoder325
7.4 Turbo Product Codes328
7.4.1 Turbo Decoding of Product Codes330
Problems335
References337
8 Ensemble Enumerators for Turbo and LDPC Codes339
8.1 Notation340
8.2 Ensemble Enumerators for Parallel-Concatenated Codes343
8.2.1 Preliminaries343
8.2.2 PCCC Ensemble Enumerators345
8.3 Ensemble Enumerators for Serial-Concatenated Codes356
8.3.1 Preliminaries356
8.3.2 SCCC Ensemble Enumerators358
8.4 Enumerators for Selected Accumulator-Based Codes362
8.4.1 Enumerators for Repeat-Accumulate Codes362
8.4.2 Enumerators for Irregular Repeat-Accumulate Codes364
8.5 Enumerators for Protograph-Based LDPC Codes367
8.5.1 Finite-Length Ensemble Weight Enumerators368
8.5.2 Asymptotic Ensemble Weight Enumerators371
8.5.3 On the Complexity of Computing Asymptotic Ensemble Enumerators376
8.5.4 Ensemble Trapping-Set Enumerators379
Problems383
References386
9 Ensemble Decoding Thresholds for LDPC and Turbo Codes388
9.1 Density Evolution for Regular LDPC Codes388
9.2 Density Evolution for Irregular LDPC Codes394
9.3 Quantized Density Evolution399
9.4 The Gaussian Approximation402
9.4.1 GA for Regular LDPC Codes403
9.4.2 GA for Irregular LDPC Codes404
9.5 On the Universality of LDPC Codes407
9.6 EXIT Charts for LDPC Codes412
9.6.1 EXIT Charts for Regular LDPC Codes414
9.6.2 EXIT Charts for Irregular LDPC Codes416
9.6.3 EXIT Technique for Protograph-Based Codes417
9.7 EXIT Charts for Turbo Codes420
9.8 The Area Property for EXIT Charts424
9.8.1 Serial-Concatenated Codes424
9.8.2 LDPC Codes425
Problems426
References428
10 Finite-Geometry LDPC Codes430
10.1 Construction of LDPC Codes Based on Lines of Euclidean Geometries430
10.1.1 A Class of Cyclic EG-LDPC Codes432
10.1.2 A Class of Quasi-Cyclic EG-LDPC Codes434
10.2 Construction of LDPC Codes Based on the Parallel Bundles of Lines in Euclidean Geometries436
10.3 Construction of LDPC Codes Based on Decomposition of Euclidean Geometries439
10.4 Construction of EG-LDPC Codes by Masking444
10.4.1 Masking445
10.4.2 Regular Masking446
10.4.3 Irregular Masking447
10.5 Construction of QC-EG-LDPC Codes by Circulant Decomposition450
10.6 Construction of Cyclic and QC-LDPC Codes Based on Projective Geometries455
10.6.1 Cyclic PG-LDPC Codes455
10.6.2 Quasi-Cyclic PG-LDPC Codes458
10.7 One-Step Majority-Logic and Bit-Flipping Decoding Algorithms for FG-LDPC Codes460
10.7.1 The OSMLG Decoding Algorithm for LDPC Codes over the BSC461
10.7.2 The BF Algorithm for Decoding LDPC Codes over the BSC468
10.8 Weighted BF Decoding:Algorithm 1469
10.9 Weighted BF Decoding:Algorithms 2 and 3472
10.10 Concluding Remarks477
Problems477
References481
11 Constructions of LDPC Codes Based on Finite Fields484
11.1 Matrix Dispersions of Elements of a Finite Field484
11.2 A General Construction of QC-LDPC Codes Based on Finite Fields485
11.3 Construction of QC-LDPC Codes Based on the Minimum-Weight Codewords of an RS Code with Two Information Symbols487
11.4 Construction of QC-LDPC Codes Based on the Universal Parity-Check Matrices of a Special Subclass of RS Codes495
11.5 Construction of QC-LDPC Codes Based on Subgroups of a Finite Field501
11.5.1 Construction of QC-LDPC Codes Based on Subgroups of the Additive Group of a Finite Field501
11.5.2 Construction of QC-LDPC Codes Based on Subgroups of the Multiplicative Group of a Finite Field503
11.6 Construction of QC-LDPC Code Based on the Additive Group of a Prime Field506
11.7 Construction of QC-LDPC Codes Based on Primitive Elements of a Field510
11.8 Construction of QC-LDPC Codes Based on the Intersecting Bundles of Lines of Euclidean Geometries512
11.9 A Class of Structured RS-Based LDPC Codes516
Problems520
References522
12 LDPC Codes Based on Combinatorial Designs,Graphs,and Superposition523
12.1 Balanced Incomplete Block Designs and LDPC Codes523
12.2 Class-Ⅰ Bose BIBDs and QC-LDPC Codes524
12.2.1 Class-Ⅰ Bose BIBDs525
12.2.2 Type-Ⅰ Class-Ⅰ Bose BIBD-LDPC Codes525
12.2.3 Type-Ⅱ Class-Ⅰ Bose BIBD-LDPC Codes527
12.3 Class-Ⅱ Bose BIBDs and QC-LDPC Codes530
12.3.1 Class-Ⅱ Bose BIBDs531
12.3.2 Type-Ⅰ Class-Ⅱ Bose BIBD-LDPC Codes531
12.3.3 Type-Ⅱ Class-Ⅱ QC-BIBD-LDPC Codes533
12.4 Construction of Type-Ⅱ Bose BIBD-LDPC Codes by Dispersion536
12.5 A Trellis-Based Construction of LDPC Codes537
12.5.1 A Trellis-Based Method for Removing Short Cycles from a Bipartite Graph538
12.5.2 Code Construction540
12.6 Construction of LDPC Codes Based on Progressive Edge-Growth Tanner Graphs542
12.7 Construction of LDPC Codes by Superposition546
12.7.1 A General Superposition Construction of LDPC Codes546
12.7.2 Construction of Base and Constituent Matrices548
12.7.3 Superposition Construction of Product LDPC Codes552
12.8 Two Classes of LDPC Codes with Girth 8554
Problems557
References559
13 LDPC Codes for Binary Erasure Channels561
13.1 Iterative Decoding of LDPC Codes for the BEC561
13.2 Random-Erasure-Correction Capability563
13.3 Good LDPC Codes for the BEC565
13.4 Correction of Erasure-Bursts570
13.5 Erasure-Burst-Correction Capabilities of Cyclic Finite-Geometry and Superposition LDPC Codes573
13.5.1 Erasure-Burst-Correction with Cyclic Finite-Geometry LDPC Codes573
13.5.2 Erasure-Burst-Correction with Superposition LDPC Codes574
13.6 Asymptotically Optimal Erasure-Burst-Correction QC-LDPC Codes575
13.7 Construction of QC-LDPC Codes by Array Dispersion580
13.8 Cyclic Codes for Correcting Bursts of Erasures586
Problems589
References590
14 Nonbinary LDPC Codes592
14.1 Definitions592
14.2 Decoding of Nonbinary LDPC Codes593
14.2.1 The QSPA593
14.2.2 The FFT-QSPA598
14.3 Construction of Nonbinary LDPC Codes Based on Finite Geometries600
14.3.1 A Class of q m-ary Cyclic EG-LDPC Codes601
14.3.2 A Class of Nonbinary Quasi-Cyclic EG-LDPC Codes607
14.3.3 A Class of Nonbinary Regular EG-LDPC Codes610
14.3.4 Nonbinary LDPC Code Constructions Based on Projective Geometries611
14.4 Constructions of Nonbinary QC-LDPC Codes Based on Finite Fields614
14.4.1 Dispersion of Field Elements into Nonbinary Circulant Permutation Matrices615
14.4.2 Construction of Nonbinary QC-LDPC Codes Based on Finite Fields615
14.4.3 Construction of Nonbinary QC-LDPC Codes by Masking617
14.4.4 Construction of Nonbinary QC-LDPC Codes by Array Dispersion618
14.5 Construction of QC-EG-LDPC Codes Based on Parallel Flats in Euclidean Geometries and Matrix Dispersion620
14.6 Construction of Nonbinary QC-EG-LDPC Codes Based on Intersecting Flats in Euclidean Geometries and Matrix Dispersion624
14.7 Superposition-Dispersion Construction of Nonbinary QC-LDPC Codes628
Problems631
References633
15 LDPC Code Applications and Advanced Topics636
15.1 LDPC-Coded Modulation636
15.1.1 Design Based on EXIT Charts638
15.2 Turbo Equalization and LDPC Code Design for ISI Channels644
15.2.1 Turbo Equalization644
15.2.2 LDPC Code Design for ISI Channels648
15.3 Estimation of LDPC Error Floors651
15.3.1 The Error-Floor Phenomenon and Trapping Sets651
15.3.2 Error-Floor Estimation654
15.4 LDPC Decoder Design for Low Error Floors657
15.4.1 Codes Under Study659
15.4.2 The Bi-Mode Decoder661
15.4.3 Concatenation and Bit-Pinning666
15.4.4 Generalized-LDPC Decoder668
15.4.5 Remarks670
15.5 LDPC Convolutional Codes670
15.6 Fountain Codes672
15.6.1 Tornado Codes673
15.6.2 Luby Transform Codes674
15.6.3 Raptor Codes675
Problems676
References677
Index681