图书介绍
海岸水域表面波动力学 英文版PDF|Epub|txt|kindle电子书版本下载
![海岸水域表面波动力学 英文版](https://www.shukui.net/cover/7/34903319.jpg)
- HuangHu著 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040250619
- 出版时间:2009
- 标注页数:236页
- 文件大小:6MB
- 文件页数:251页
- 主题词:海岸-水域-表面波-海洋动力学-英文
PDF下载
下载说明
海岸水域表面波动力学 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Preliminaries1
1.1 Water Wave Theories in Historical Perspective1
1.1.1 The Mild-Slope Equations2
1.1.2 The Boussinesq-Type Equations3
1.2 The Governing Equations4
1.3 Lagrangian Formulation5
1.4 Hamiltonian Formulation5
References6
2 Weakly Nonlinear Water Waves Propagating over Uneven Bottoms9
2.1 Modified Third-Order Evolution Equations of Liu and Dingemans9
2.2 Fourth-Order Evolution Equations and Stability Analysis15
2.3 Third-Order Evolution Equations for Wave-Current interactions26
References35
3 Resonant Interactions Between Weakly Nonlinear Stokes Waves and Ambient Currents and Uneven Bottoms37
3.1 Introduction37
3.2 Governing Equations and WKBJ Perturbation Expansion38
3.3 Subharmonic Resonance40
3.4 Dynamical System46
References51
4 The Mild-Slope Equations53
4.1 Introduction53
4.2 Three-Dimensional Currents over Mildly Varying Topography54
4.3 Two-Dimensional Currents over Rapidly Varying Topography58
4.4 Three-Dimensional Currents over Rapidly Varying Topography65
4.5 Two-Dimensional Currents over Generally Varying Topography70
4.6 A Hierarchy for Two-Dimensional Currents over Generally Varying Topography73
References77
5 Linear Gravity Waves over Rigid,Porous Bottoms79
5.1 Introduction79
5.2 A Rapidly Varying Bottom80
5.3 Generally Varying Bottom85
References93
6 Nonlinear Unified Equations over an Uneven Bottom95
6.1 Introduction95
6.2 Nonlinear Unified Equations95
6.3 Explicit Special Cases97
6.3.1 Generalized Nonlinear Shallow-Water Equations of Airy97
6.3.2 Generalized Mild-Slope Equation98
6.3.3 Stokes Wave Theory98
6.3.4 Higher-Order Boussinesq-Type Equations99
References102
7 Generalized Mean-Flow Theory103
7.1 Introduction103
7.2 Governing Equations and Boundary Conditions104
7.3 Averaged Equations of Motion105
7.4 Generalized Wave Action Conservation Equation and Its Wave Actions109
References110
8 Hamiltonian Description of Stratified Wave-Current Interactions113
8.1 Introduction113
8.2 Two-Layer Wave-Current Interactions114
8.3 n-Layer Pure Waves119
8.4 n-Layer Wave-Current Interactions over Uneven Bottoms122
References126
9 Surface Capillary-Gravity Short-Crested Waves with a Current in Water of Finite Depth127
9.1 Introduction128
9.2 An Incomplete Match and Its Solution128
9.3 Linear Capillary-Gravity Short-Crested Waves132
9.3.1 System Formulation132
9.3.2 Analytical Solutions and Kinematic and Dynamical Variables134
9.3.3 Special Cases136
9.4 Second-Order Capillary-Gravity Short-Crested Waves138
9.5 Third-Order Gravity Short-Crested Waves146
9.5.1 The System Equations and the Perturbation Method146
9.5.2 Third-Order Solution149
9.5.3 Special Cases161
9.5.4 Short-Crested Wave Quantities165
9.5.5 Short-Crested Wave Forces on Vertical Walls171
9.6 Third-Order Pure Capillary-Gravity Short-Crested Waves178
9.6.1 Formulation178
9.6.2 Solution180
9.6.3 Kinematical and Dynamical Variables197
References208
Appendices211
A γ,μand v in(2.1.4)211
B ζ(3,1),?p(3.1),A(3,2),ηj,τj,μj,λj and vj in Chapter 2212
C λ1 and λ2 in(2.3.44)218
D μj in(3.3.22)219
E I23,I33,I35,I36 in Chapter 5220
F Coefficients in(9.4.33)and(9.4.34)223
G Coefficients in(9.5.136)-(9.5.138)225
H Coefficients in(9.5.139)and(9.5.140)227
Subject Index231