图书介绍

先进碳材料科学与工程 英文版PDF|Epub|txt|kindle电子书版本下载

先进碳材料科学与工程 英文版
  • (日)稻垣道夫等著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:9787302347170
  • 出版时间:2013
  • 标注页数:434页
  • 文件大小:74MB
  • 文件页数:446页
  • 主题词:碳-材料科学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

先进碳材料科学与工程 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Introduction1

1.1 Classification of carbon materials2

1.2 Nanotexture of carbon materials5

1.3 Microtexture of carbon materials8

1.4 Specification of carbon materials10

1.5 Construction of the present book12

References12

CHAPTER 2 Carbon Nanotubes:Synthesis and Formation15

2.1 Synthesis of carbon nanotubes16

2.2 Formation of carbon nanotubes22

2.2.1 Formation into yarns22

2.2.2 Formation into sheets24

2.2.3 Formation into sponges29

2.3 Applications of carbon nanotubes30

2.4 Concluding remarks35

References36

CHAPTER 3 Graphene:Synthesis and Preparation41

3.1 Preparation through the cleavage of graphite42

3.2 Preparation through the exfoliation of graphite45

3.2.1 Preparation using graphite oxides45

3.2.2 Preparation using graphite intercalation compounds49

3.3 Synthesis through chemical vapor deposition50

3.4 Synthesis through the organic route56

3.5 Preparation through other processes57

3.6 Concluding remarks59

References62

CHAPTER 4 Carbonization Under Pressure67

4.1 Carbonization under built-up pressure68

4.1.1 Setup for carbonization under pressure68

4.1.2 Optical texture and carbonization yield68

4.1.3 Particle morphology70

4.2 Carbonization under hydrothermal conditions74

4.3 Carbonization under supercritical conditions78

4.4 Concluding remarks79

4.4.1 Temperature and pressure conditions for carbonization79

4.4.2 Composition of precursors for the formation of carbon spheres81

References84

CHAPTER 5 Stress Graphitization87

5.1 Graphitization under pressure88

5.1.1 Structural change in carbons88

5.1.2 Mechanism93

5.2 Graphitization in coexistence with minerals under pressure96

5.2.1 Coexistence with calcium compounds96

5.2.2 Coexistence with other minerals99

5.2.3 Mechanism for acceleration of graphitization99

5.3 Stress graphitization in carbon/carbon composites102

5.3.1 Acceleration of graphitization102

5.3.2 Mechanism105

5.4 Concluding remarks107

5.4.1 Graphitization under pressure107

5.4.2 Occurrence of graphite in nature108

5.4.3 Stress graphitization in carbon/carbon composites109

References109

CHAPTER 6 Glass-like Carbon:Its Activation and Graphitization111

6.1 Activation of glass-like carbon111

6.1.1 Glass-like carbon spheres111

6.1.2 Activation in a flow of dry air113

6.1.3 Activation in a flow of wet air117

6.1.4 Activation process118

6.1.5 Direct observation of micropores121

6.1.6 Two-step activation123

6.2 Graphitization of glass-like carbons124

6.2.1 Graphitization through melting124

6.2.2 Graphitization under high pressure126

6.2.3 Graphitization in C/C composites128

6.3 Concluding remarks130

References132

CHAPTER 7 Template Carbonization:Morphology and Pore Control133

7.1 Template carbonization for morphological control134

7.1.1 Inorganic layered compounds134

7.1.2 Anodic aluminum oxide films135

7.1.3 Organic foams138

7.2 Template carbonization for pore-structure control139

7.2.1 Zeolites139

7.2.2 Mesoporous silicas142

7.2.3 MgO145

7.2.4 Block copolymer surfactants(soft templates)149

7.2.5 Metal-organic frameworks153

7.2.6 Other templates154

7.3 Concluding remarks155

References159

CHAPTER 8 Carbon Nanofibers Via Electrospinning165

8.1 Carbon nanofibers synthesized via electrospinning166

8.1.1 Polyacrylonitrile166

8.1.2 Pitch170

8.1.3 Polyimides171

8.1.4 Poly(vinylidene fluoride)171

8.1.5 Phenolic resins172

8.2 Applications172

8.2.1 Electrode materials for electrochemical capacitors172

8.2.2 Anode materials for lithium-ion rechargeable batteries175

8.2.3 Catalyst support178

8.2.4 Composite with carbon nanotubes180

8.3 Concluding remarks180

8.3.1 Carbon precursors180

8.3.2 Pore-structure control182

8.3.3 Improvement of electrical conductivity184

8.3.4 Loading of metallic species185

References186

CHAPTER 9 Carbon Foams189

9.1 Preparation of carbon foams190

9.1.1 Exfoliation and compaction of graphite190

9.1.2 Blowing of carbon precursors193

9.1.3 Template carbonization198

9.2 Applications of carbon foams201

9.2.1 Thermal energy storage202

9.2.2 Electrodes207

9.2.3 Adsorption208

9.2.4 Other applications209

9.3 Concluding remarks210

References212

CHAPTER 10 Nanoporous Carbon Membranes and Webs215

10.1 Synthesis216

10.1.1 Pyrolysis and carbonization of organic precursors216

10.1.2 Templating219

10.1.3 Chemical and physical vapor deposition222

10.1.4 Formation of carbon nanotubes and nanofibers223

10.2 Applications224

10.2.1 Adsorbents224

10.2.2 Separation membranes225

10.2.3 Chemical sensors and biosensors228

10.2.4 Electrodes229

10.2.5 Other applications231

10.3 Concluding remarks231

References233

CHAPTER 11 Carbon Materials for Electrochemical Capacitors237

11.1 Symmetrical supercapacitors239

11.1.1 Activated carbons239

11.1.2 Templated carbons243

11.1.3 Other carbons246

11.1.4 Carbons containing foreign atoms248

11.1.5 Carbon nanotubes and nanofibers252

11.2 Asymmetrical supercapacitors254

11.3 Asymmetrical capacitors256

11.4 Carbon-coating of electrode materials258

11.5 Concluding remarks260

References261

CHAPTER 12 Carbon Materials in Lithium-ion Rechargeable Batteries267

12.1 Anode materials268

12.1.1 Materials268

12.1.2 Carbon coating of graphite270

12.1.3 Carbon coating of Li4Ti5O12275

12.2 Cathode materials278

12.2.1 Materials278

12.2.2 Carbon coating of LiFePO4279

12.3 Concluding remarks283

References284

CHAPTER 13 Carbon Materials in Photocatalysis289

13.1 TiO2-loaded activated carbons290

13.2 Mixture of activated carbon and TiO2295

13.3 Carbon-doped TiO2297

13.4 Carbon-coated TiO2300

13.5 Synthesis of novel photocatalysts via carbon coating305

13.5.1 Carbon-coated TinO2n-1305

13.5.2 Carbon-coated W18O49305

13.5.3 TiO2 co-modified by carbon and iron305

13.6 Concluding remarks306

References308

CHAPTER 14 Carbon Materials for Spilled-oil Recovery313

14.1 Sorption capacity for heavy oils314

14.1.1 Exfoliated graphite314

14.1.2 Carbonized fir fibers318

14.1.3 Carbon fibers318

14.1.4 Carbon nanotube sponge319

14.1.5 Other carbon materials320

14.2 Selectivity of sorption320

14.3 Sorption kinetics321

14.4 Cycle performance of carbon sorbents and heavy oils323

14.5 Preliminary experiments for practical recovery of spilled heavy oils326

14.5.1 Exfoliated graphite packed into a plastic bag326

14.5.2 Formed exfoliated graphite327

14.5.3 Heavy oil sorption from contaminated sand328

14.5.4 Sorption of heavy-oil mousse329

14.5.5 TiO2-loaded exfoliated graphite329

14.6 Concluding remarks329

14.6.1 Comparison among carbon materials329

14.6.2 Mechanism of heavy oil sorption331

14.6.3 Comparison with other materials332

References333

CHAPTER 15 Carbon Materials for Adsorption of Molecules and Ions335

15.1 Adsorption and storage of hydrogen336

15.2 Adsorption and storage of methane and methane hydrate339

15.3 Adsorption and storage of CO2343

15.4 Adsorption of organic molecules346

15.4.1 Organic gases(including VOCs)346

15.4.2 Organic molecules in water350

15.5 Adsorption and removal of heavy-metal ions in water353

15.6 Capacitive deionization354

15.7 Concluding remarks356

References357

CHAPTER 16 Highly Oriented Graphite with High Thermal Conductivity363

16.1 Preparation364

16.2 Characterization366

16.3 Carbon materials with high thermal conductivity370

16.3.1 Pyrolytic graphite370

16.3.2 Polyimide-derived graphite373

16.3.3 Natural graphite and its composites374

16.3.4 Carbon fibers376

16.3.5 Carbon nanotubes and graphene378

16.3.6 Diamond and diamond-like carbons379

16.4 Concluding remarks382

References384

CHAPTER 17 Isotropic High-density Graphite and Nuclear Applications387

17.1 Production388

17.2 Properties392

17.3 Nuclear applications400

17.3.1 Fission reactors400

17.3.2 Fusion reactors405

17.4 Concluding remarks406

References409

INDEX411

热门推荐