图书介绍
自激振动 理论、范例及研究方法 英文PDF|Epub|txt|kindle电子书版本下载
- 丁文镜著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302242963
- 出版时间:2011
- 标注页数:399页
- 文件大小:14MB
- 文件页数:413页
- 主题词:自激振动-研究-英文
PDF下载
下载说明
自激振动 理论、范例及研究方法 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Introduction1
1.1 Main Features of Self-Excited Vibration1
1.1.1 Natural Vibration in Conservative Systems1
1.1.2 Forced Vibration under Periodic Excitations3
1.1.3 Parametric Vibration6
1.1.4 Self-Excited Vibration9
1.2 Conversion between Forced Vibration and Self-Excited Vibration12
1.3 Excitation Mechanisms of Self-Excited Vibration13
1.3.1 Energy Mechanism13
1.3.2 Feedback Mechanism15
1.4 A Classification of Self-Excited Vibration Systems16
1.4.1 Discrete System17
1.4.2 Continuous System17
1.4.3 Hybrid System18
1.5 Outline ofthe Book18
References20
Chapter 2 Geometrical Method21
2.1 Structure of Phase Plane21
2.2 Phase Diagrams of Conservative Systems23
2.2.1 Phase Diagram of a Simple Pendulum23
2.2.2 Phase Diagram of a Conservative System24
2.3 Phase Diagrams of Nonconservative Systems25
2.3.1 Phase Diagram of Damped Linear Vibrator25
2.3.2 Phase Diagram of Damped Nonlinear Vibrator28
2.4 Classification of Equilibrium Points of Dynamic Systems32
2.4.1 Linear Approximation at Equilibrium Point32
2.4.2 Classification of Equilibrium Points33
2.4.3 Transition between Types of Equilibrium Points35
2.5 The Existence of Limit Cycle of an Autonomous System36
2.5.1 The Index of a Closed Curve with Respect to Vector Field36
2.5.2 Theorems about the Index of Equilibrium Point39
2.5.3 The Index of Equilibrium Point and Limit Cycle39
2.5.4 The Existence of a Limit Cycle40
2.6 Soft Excitation and Hard Excitation of Self-Excited Vibration42
2.6.1 Definition of Stability of Limit Cycle43
2.6.2 Companion Relations43
2.6.3 Soft Excitation and Hard Excitation45
2.7 Self-Excited Vibration in Strongly Nonlinear Systems46
2.7.1 Waveforms of Self-Excited Vibration46
2.7.2 Relaxation Vibration47
2.7.3 Self-Excited Vibration in a Non-Smooth Dynamic System49
2.8 Mapping Method and its Application52
2.8.1 Poincare Map52
2.8.2 Piecewise Linear System55
2.8.3 Application of the Mapping Method56
References58
Chapter 3 Stability Methods59
3.1 Stability of Equilibrium Position59
3.1.1 Equilibrium Position of Autonomous System59
3.1.2 First Approximation Equation of a Nonlinear Autonomous System60
3.1.3 Definition of Stability of Equilibrium Position60
3.1.4 First Approximation Theorem of Stability of Equilibrium Position61
3.2 An Algebraic Criterion for Stability of Equilibrium Position62
3.2.1 Eigenvalues of Linear Ordinary Differential Equations62
3.2.2 Distribution of Eigenvalues of a Asymptotic Stable System63
3.2.3 Hurwitz criterion63
3.3 A Geometric Criterion for Stabilitv of Equilibrium Position65
3.3.1 Hodograph of Complex VectorD(iω)65
3.3.2 Argument of Hodograph of Complex Vector D(iω)66
3.3.3 Geometric Criterion for Stability of Equilibrium Position67
3.3.4 Coefficient Condition corresponding to the Second Type of Critical Stability68
3.4 Parameter Condition for Stability of Equilibrium Position70
3.4.1 Stable Region in Coefficient Space70
3.4.2 Stable Region in Parameter Space71
3.4.3 Parameter Perturbation on the Boundaries of Stable Region73
3.5 A Quadratic Form Criterion for Stability of Equilibrium Position75
3.5.1 Linear Equations of Morion of Holonomic System75
3.5.2 Quadratic Form of Eigenvectors of a Holonornic System76
3.5.3 Quadratic Form Criterion for a Holonomic System78
3.5.4 Influence of Circulatory Force on Stability of Equilibrium Position78
References79
Chapter 4 Quantitative Methods80
4.1 Center Manifold80
4.1.1 Concept of Flow80
4.1.2 Hartrnan-Grobman Theorem82
4.1.3 Center Manifold Theorem83
4.1.4 Equation of Center Manifold85
4.2 Hopf Bifurcation Method87
4.2.1 Poincare-Birkhoff Normal Form87
4.2.2 Poincare-Andronov-Hopf Bifurcation Theorem91
4.2.3 Hopf Bifurcation Method94
4.3 Lindstedt-Poincare Method96
4.3.1 Formulation of Equations96
4.3.2 Periodic Solution of the van der Pol Equation98
4.4 An Averaging Method of Second-Order Autonomous System100
4.4.1 Formulation of Equations100
4.4.2 Periodic Solution of Rayleigh Equation102
4.5 Method of Multiple Scales for a Second-Order Autonomous System103
4.5.1 Formulation of Equation System103
4.5.2 Formulation of Periodic Solution104
4.5.3 Periodic Solution of van der Pol Equation105
References107
Chapter 5 Analysis Method for Closed-Loop System108
5.1 Mathematical Model in Frequency Domain108
5.1.1 Concepts Related to the Closed-Loop System108
5.1.2 Typical Components110
5.1.3 Laplace Transformation111
5.1.4 Transfer Function112
5.1.5 Block Diagram of Closed-Loop Systems113
5.2 Nyquist Criterion114
5.2.1 Frequency Response114
5.2.2 Nyquist Criterion116
5.2.3 Application of Nyquist Criterion118
5.3 A Frequency Criterion for Absolute Stability of a Nonlinear Closed-Loop System121
5.3.1 Absolute Stability121
5.3.2 Block Diagram Model of Nonlinear Closed-Loop Systems122
5.3.3 Popov Theorems123
5.3.4 Application of Popov Theorem125
5.4 Describing Function Method127
5.4.1 Basic Principle127
5.4.2 Describing Function128
5.4.3 Amplitude and Frequency of Self-Excited Vibration130
5.4.4 Stability of Self-Excited Vibration131
5.4.5 Application ofDescribing Function Method131
5.5 Quadratic Optimal Control133
5.5.1 Quadratic Optimal State Control134
5.5.2 Optimal Output Control136
5.5.3 Application of Quadratic Optimal Control137
References139
Chapter 6 Stick-Slip Vibration140
6.1 Mathematical Description of Friction Force140
6.1.1 Physical Background of Friction Force141
6.1.2 Three Kinds of Mathematical Description of Friction Force141
6.2 Stick-Slip Motion145
6.2.1 A Simple Model for Studying Stick-S1ip Motion145
6.2.2 Non-Smooth Limit Cycle Caused by Friction147
6.2.3 First Type of Excitation Efiects for Stick-Slip Motion148
6.3 Hunting in Flexible Transmission Devices148
6.3.1 A Mechanical Model and its Equation of Motion149
6.3.2 Phase Path Equations in Various Stages of Hunting Motion151
6.3.3 Topological Structure of the Phase Diagram153
6.3.4 Critical Parameter Equation for the Occurrence of Hunting156
6.4 Asymmetric Dynamic Coupling Causedby Friction Force159
6.4.1 Mechanical Model and Equations of Motion159
6.4.2 Stability of Constant Velocity Motion of Dynamic System161
6.4.3 Second Type of Excitation Effect for Stick-Slip Motion164
References166
Chapter 7 Dynamic Shimmy of Front Wheel167
7.1 Physical Background of Tire Force167
7.1.1 Tire Force168
7.1.2 Cornering Force169
7.1.3 Analytical Description of Cornering Force170
7.1.4 Linear Model for Cornering Force172
7.2 Point Contact Theory174
7.2.1 Classification of Point Contact Theory174
7.2.2 Nonholonomic Constraint176
7.2.3 Potential Energy of a Rolling Tire177
7.3 Dynamic Shimmy of Front Wheel179
7.3.1 Isolated Front Wheel Model179
7.3.2 Stability of Front Wheel under Steady Rolling181
7.3.3 Stable Regions in Parameter Plane182
7.3.4 Influence of System Parameters on Dynamic Shimmy of Front Wheel183
7.4 Dynamic Shimmy of Front Wheel Coupled with Vehicle184
7.4.1 A Simplified Model of a Front Wheel System184
7.4.2 Mathematical Model of the Front Wheel System185
7.4.3 Stability of Steady Rolling of the Front Wheel System187
7.4.4 Prevention of Dynamic Shimmy in Design Stage189
References190
Chapter 8 Rotor Whirl191
8.1 Mechanical Model of Rotor in Planar Whirl191
8.1.1 Classification of rotor whirls192
8.1.2 Mechanical Model of Whirling Rotor193
8.2 Fluid-Film Force195
8.2.1 Operating Mechanism of Hydrodynamic Bearings195
8.2.2 Reynolds' Equation196
8.2.3 Pressure Distribution on Journal Surface199
8.2.4 Linearized Fluid Film Force202
8.2.5 Concentrated Parameter Model of Fluid Film Force204
8.2.6 Linear Expressions of Seal Force207
8.3 Oil Whirl and Oil Whip208
8.3.1 Hopf Bifurcation leading to Oil Whirl of Rotor208
8.3.2 Threshold Speed and Whirl Frequency212
8.3.3 Influence of Shaft Elasticity on the Oil Whirl of Rotor215
8.3.4 Influence of Extemal Damping on Oil Whirl218
8.3.5 Oil Whip222
8.4 Internal Damping in Deformed Rotation Shaft226
8.4.1 Physical Background of Internal Force of Rotation Shaft226
8.4.2 Analytical Expression of Internal Force of Rotation Shaft227
8.4.3 Three Components of Internal Force of Rotation Shaft231
8.5 Rotor Whirl Excited by Internal Damping232
8.5.1 A Simple Model of Internal Damping Force of Deformed Rotating Shaft232
8.5.2 Synchronous Whirl of Rotor with Unbalance233
8.5.3 Supersynchronous Whirl236
8.6 Cause and Prevention of Rotor Whirl237
8.6.1 Structure of Equation of Motion238
8.6.2 Common Causes of Two Kinds of Rotor Whirls239
8.6.3 Preventing the Rotor from Whirling239
References240
Chapter 9 Self-Excited Vibrations from Interaction of Structures and Fluid243
9.1 Vortex Resonance in Flexible Structures243
9.1.1 Vortex Shedding244
9.1.2 Predominate Frequency246
9.1.3 Wake Oscillator Model249
9.1.4 Amplitude Prediction253
9.1.5 Reduction of Vortex Resonance254
9.2 Flutter in Cantilevered Pipe Conveying Fluid255
9.2.1 Linear Mathematical Model255
9.2.2 Critical Parameter Condition258
9.2.3 Hopf Bifurcation and Critical Flow Velocity261
9.2.4 Excitation Mechanism and Prevention of Flutter265
9.3 Classical Flutter in Two-Dimensional Airfoil268
9.3.1 A Continuous Model of Long Wing268
9.3.2 Critical Flow Velocity of Classical Flutter270
9.3.3 Excitation Mechanism of Classical Flutter273
9.3.4 Influence of Parameters of the Wing on Critical Speed of Classical Flutter274
9.4 Stall Flutter in Flexible Structure277
9.4.1 Aerodynamic Forces Exciting Stall Flutter278
9.4.2 A Mathematical Model of Galloping in the Flexible Structure281
9.4.3 Critical Speed and Hysteresis Phenomenon of Galloping282
9.4.4 Some Features of Stall Flutter and its Prevention Schemes286
9.5 Fluid-Elastic Instability in Array of Circular Cylinders288
9.5.1 Fluid-Elastic Instability289
9.5.2 Fluid Forces Depending on Motion of Circular Cylinders290
9.5.3 Analysis of Flow-Induced Vibration292
9.5.4 Approximate Expressions of Critical Flow Velocity294
9.5.5 Prediction and Prevention of Fluid-Elastic Instability298
References299
Chapter 10 Self-Excited Oscillations in Feedback Control System302
10.1 Heating Control System303
10.1.1 Operating Principle of the Heating Control System303
10.1.2 Mathematical Model of the Heating Control System303
10.1.3 Time History of Temperature Variation305
10.1.4 Stable Limit Cycle in Phase Plane306
10.1.5 Amplitude and Frequency of Room Temperature Derivation307
10.1.6 An Excitation Mechanism of Self-Excited Oscillation308
10.2 Electrical Position Control System with Hysteresis308
10.2.1 Principle Diagram308
10.2.2 Equations of Position Control System with Hysteresis Nonlinearity310
10.2.3 Phase Diagram and Point Mapping311
10.2.4 Existence of Limit Cycle313
10.2.5 Critical Parameter Condition314
10.3 Electrical Position Control System with Hysteresis and Dead-Zone315
10.3.1 Equation of Motion315
10.3.2 Phase Diagram and Point Mapping316
10.3.3 Existence and Stability of Limit Cycle318
10.3.4 Critical Parameter Condition321
10.4 Hydraulic Position Control System322
10.4.1 Schematic Diagram of a Hydraulic Actuator322
10.4.2 Equations of Motion of Hydraulic Position Control System323
10.4.3 Linearized Mathematical Model325
10.4.4 Equilibrium Stability of Hydraulic Position Control System327
10.4.5 Amplitude and Frequency of Self-Excited Vibration328
10.4.6 Influence of Dead-Zone on Motion of Hydraulic Position Control System330
10.4.7 Influence of Hysteresis and Dead-Zone on Motion of Hydraulic Position Control System334
10.5 A Nonlinear Control System under Velocity Feedback with Time Delay338
References344
Chapter 11 Modeling and Control345
11.1 Excitation Mechanism of Self-Excited Oscillation346
11.1.1 An Explanation about Energy Mechanism346
11.1.2 An Explanation about Feedback Mechanism347
11.1.3 Joining of Energy and Feedback Mechanisms349
11.2 Determine the Extent of a Mechanical Model350
11.2.1 Minimal Model and Principle Block Diagram351
11.2.2 First Type of Extended Model352
11.2.3 Second Type of Extended Model355
11.3 Mathematical Description of Motive Force358
11.3.1 Integrate the Differential Equations of Motion of Continuum358
11.3.2 Use of the Nonholonomic Constraint Equations359
11.3.3 Establishing Equivalent Model of the Motive Force360
11.3.4 Construct the Equivalent Oscillator of Motive Force361
11.3.5 Identification of Grey Box Model362
11.3.6 Constructing an Empiric Formula of the Motive Force363
11.4 Establish Equations of Morion of Mechanical Systems365
11.4.1 Application of Lagrange's Equation of Motion365
11.4.2 Application of Hamilton's Principle368
11.4.3 Hamilton's Principle for Open Systems372
11.5 Discretization of Mathematical Model of a Distributed Parameter System374
11.5.1 Lumped Parameter Method374
11.5.2 Assumed-Modes Method376
11.5.3 Finite Element Method379
11.6 Active Control for Suppressing Self-Excited Vibration380
11.6.1 Active Control of Flexible Rotor381
11.6.2 Active Control of an Airfoil Section with Flutter384
References387
Subject Index390