图书介绍

Harmonic Analysis and Approximation on the Unit Sphere 球面上的调和分析与逼近PDF|Epub|txt|kindle电子书版本下载

Harmonic Analysis and Approximation on the Unit Sphere 球面上的调和分析与逼近
  • Wang Kunyang,Li Luoqing著 著
  • 出版社: 北京:科学出版社
  • ISBN:7030083660
  • 出版时间:2000
  • 标注页数:300页
  • 文件大小:6MB
  • 文件页数:309页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Harmonic Analysis and Approximation on the Unit Sphere 球面上的调和分析与逼近PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 Preliminaries1

1.1 Basic concepts1

1.1.1 Definition of ?,?and?1

Contents1

1.1.2 L2(Ωn)(n≥2)4

1.1.3 The case n=26

1.1.4 Zonal harmonics7

1.1.5 Representation for spherical harmonics14

1.1.6 Laplace-Beltrami Operator16

1.1.7 The convolution for functions on sphere17

1.2.1 Rodrigues formula21

1.2 Gegenbauer and Jacobi polynomials21

1.2.2 Funk-Hecke formula24

1.2.3 Laplace representation26

1.2.4 Generating formulas27

1.2.5 The leading coefficient of?31

1.2.6 Differential equations for?31

1.2.7 Jacobi Polynomials32

1.3 Jacobi polynomials with complex indices34

Chapter 2 Fourier-Laplace Series43

2.1 Introduction43

2.2 Convergence,Lebesgue constant45

2.3 Cesàro means(Early results)48

2.4 Translation operator and mean operator56

2.5 Maximal translation operator63

2.5.1 The proof of Theorem 2.5.164

2.5.2 Proof of Theorem 2.5.271

2.6 Projection operators75

Chapter 3 Equiconvergent Operators of Cesàro Means85

3.1 Definition85

3.2 Localization95

3.2.1 The case δ≥n-295

-1<δ<n-297

3.2.2 The necessity of antipole conditions when97

3.2.3 Antipole conditions when?-1<δ<n-2100

3.2.4 Corollary of Theorems 3.2.5 and 3.2.6105

3.3 Pointwise convergence106

3.3.1 Equivalent conditionsfor convergence106

3.3.2 Tests for convergence108

3.3.3 A test of Salem type113

3.4 Maximal operatorE? and a.e.convergence116

3.5 Application to linear summability129

3.5.1 Introduction129

3.5.2 Auxiliary lemmas131

3.5.3 Convergence everywhere142

3.5.4 Convergence at Lebesgue points150

Chapter 4 Constructive Properties of Spherical Functions161

4.1 Best approximation operator161

4.2 Pointwise Derivatives162

4.2.1 Preliminary163

4.2.2 Estimate for the tangent gradients165

4.2.3 Estimate for the normal gradient of harmonicpolynomials168

4.3 Fractional derivative and integral170

4.4.1 Definitinitions172

4.4 Fractional integrals of variable order172

4.4.2 Propertiesof Poisson integrals on the sphere174

4 4.3 Proof of Theorem 4.4.1180

4.5 Modulus of continuity182

4.6 Derivatives and finite differences188

Chapter 5 Jackson Type Theorems193

5.1 Jackson inequality and K-functional193

5.1.1 Estimates for ultraspherical polynomials194

5.1.2 Estimates for the best approximation212

5.1.3 Estimate for derivative of polynomials214

5.1.4 Proofof Theorems 5.1.1 and 5.1.2215

5.2 Difference*△?and space H?216

Chapter 6 Approximation by Linear Means229

6.1 Almost everywhere approximation229

6.1.1 Introduction229

6.1 2 Approximation by Riesz means on sets of231

full measure231

6.1.3 Approximation by partial sums on sets of236

full measure236

6.1.4 Strong approximation by Cesàro Means241

6.2 Approximation in norm254

6.2.1 Riesz means and Peetre K-mmoduli254

6.2.2 Riesz means and the best approximation257

6.2.3 Riesz means with critical index259

6.2.4 Riesz means and Cesàro means263

6.3 The de la Vallée Poussin Means266

6.3.1 Convergence and approximation in norm268

6.3.2 Pointwise convergence and approximation270

6.3.3 Weak type inequalities for the best approximation273

6.3.4 Characterization through a classical modulus ofsmoothness in C275

6.3.5 Approximation for zonal functions280

References285

Index299

热门推荐