图书介绍
Python数据分析 影印版PDF|Epub|txt|kindle电子书版本下载
![Python数据分析 影印版](https://www.shukui.net/cover/22/31361793.jpg)
- Wes McKinney著 著
- 出版社: 南京:东南大学出版社
- ISBN:9787564175191
- 出版时间:2018
- 标注页数:526页
- 文件大小:54MB
- 文件页数:544页
- 主题词:软件工具-程序设计-英文
PDF下载
下载说明
Python数据分析 影印版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Preliminaries1
1.1 What Is This Book About?1
What Kinds of Data?1
1.2 Why Python for Data Analysis?2
Python as Glue2
Solving the “Two-Language” Problem3
Why Not Python?3
1.3 Essential Python Libraries4
NumPy4
pandas4
matplotlib5
IPython and Jupyter6
Scipy6
scikit-learn7
statsmodels8
1.4 Installation and Setup8
Windows9
Apple (OS X,macOS)9
GNU/Linux9
Installing or Updating Python Packages10
Python 2 and Python 311
Integrated Development Environments (IDEs) and Text Editors11
1.5 Community and Conferences12
1.6 Navigating This Book12
Code Examples13
Data for Examples13
Import Conventions14
Jargon14
2.Python Language Basics,IPython,and Jupyter Notebooks15
2.1 The Python Interpreter16
2.2 IPython Basics17
Running the IPython Shell17
Running the Jupyter Notebook18
Tab Completion21
Introspection23
The %run Command25
Executing Code from the Clipboard26
Terminal Keyboard Shortcuts27
About Magic Commands28
Matplotlib Integration29
2.3 Python Language Basics30
Language Semantics30
Scalar Types38
Control Flow46
3.Built-in Data Structures,Functions,and Files51
3.1 Data Structures and Sequences51
Tuple51
List54
Built-in Sequence Functions59
dict61
set65
List,Set,and Dict Comprehensions67
3.2 Functions69
Namespaces,Scope,and Local Functions70
Returning Multiple Values71
Functions Are Objects72
Anonymous (Lambda) Functions73
Currying:Partial Argument Application74
Generators75
Errors and Exception Handling77
3.3 Files and the Operating System80
Bytes and Unicode with Files83
3.4 Conclusion84
4.NumPy Basics:Arrays and Vectorized Computation85
4.1 The NumPy ndarray:A Multidimensional Array Object87
Creating ndarrays88
Data Types for ndarrays90
Arithmetic with NumPy Arrays93
Basic Indexing and Slicing94
Boolean Indexing99
Fancy Indexing102
Transposing Arrays and Swapping Axes103
4.2 Universal Functions:Fast Element-Wise Array Functions105
4.3 Array-Oriented Programming with Arrays108
Expressing Conditional Logic as Array Operations109
Mathematical and Statistical Methods111
Methods for Boolean Arrays113
Sorting113
Unique and Other Set Logic114
4.4 File Input and Output with Arrays115
4.5 Linear Algebra116
4.6 Pseudorandom Number Generation118
4.7 Example:Random Walks119
Simulating Many Random Walks at Once121
4.8 Conclusion122
5.Getting Started with pandas123
5.1 Introduction to pandas Data Structures124
Series124
DataFrame128
Index Objects134
5.2 Essential Functionality136
Reindexing136
Dropping Entries from an Axis138
Indexing,Selection,and Filtering140
Integer Indexes145
Arithmetic and Data Alignment146
Function Application and Mapping151
Sorting and Ranking153
Axis Indexes with Duplicate Labels157
5.3 Summarizing and Computing Descriptive Statistics158
Correlation and Covariance160
Unique Values,Value Counts,and Membership162
5.4 Conclusion165
6.Data Loading,Storage,and File Formats167
6.1 Reading and Writing Data in Text Format167
Reading Text Files in Pieces173
Writing Data to Text Format175
Working with Delimited Formats176
JSON Data178
XML and HTML:Web Scraping180
6.2 Binary Data Formats183
Using HDF5 Format184
Reading Microsoft Excel Files186
6.3 Interacting with Web APIs187
6.4 Interacting with Databases188
6.5 Conclusion190
7.Data Cleaning and Preparation191
7.1 Handling Missing Data191
Filtering Out Missing Data193
Filling In Missing Data195
7.2 Data Transformation197
Removing Duplicates197
Transforming Data Using a Function or Mapping198
Replacing Values200
Renaming Axis Indexes201
Discretization and Binning203
Detecting and Filtering Outliers205
Permutation and Random Sampling206
Computing Indicator/Dummy Variables208
7.3 String Manipulation211
String Object Methods211
Regular Expressions213
Vectorized String Functions in pandas216
7.4 Conclusion219
8.Data Wrangling:Join,Combine,and Reshape221
8.1 Hierarchical Indexing221
Reordering and Sorting Levels224
Summary Statistics by Level225
Indexing with a DataFrame’s columns225
8.2 Combining and Merging Datasets227
Database-Style DataFrame Joins227
Merging on Index232
Concatenating Along an Axis236
Combining Data with Overlap241
8.3 Reshaping and Pivoting242
Reshaping with Hierarchical Indexing243
Pivoting “Long” to “Wide” Format246
Pivoting “Wide” to “Long” Format249
8.4 Conclusion251
9.Plotting and Visualization253
9.1 A Brief matplotlib API Primer253
Figures and Subplots255
Colors,Markers,and Line Styles259
Ticks,Labels,and Legends261
Annotations and Drawing on a Subplot265
Saving Plots to File267
matplotlib Configuration268
9.2 Plotting with pandas and seaborn268
Line Plots269
Bar Plots272
Histograms and Density Plots277
Scatter or Point Plots280
Facet Grids and Categorical Data283
9.3 Other Python Visualization Tools285
9.4 Conclusion286
10.Data Aggregation and Group Operations287
10.1 GroupBy Mechanics288
Iterating Over Groups291
Selecting a Column or Subset of Columns293
Grouping with Dicts and Series294
Grouping with Functions295
Grouping by Index Levels295
10.2 Data Aggregation296
Column-Wise and Multiple Function Application298
Returning Aggregated Data Without Row Indexes301
10.3 Apply:General split-apply-combine302
Suppressing the Group Keys304
Quantile and Bucket Analysis305
Example:Filling Missing Values with Group-Specific Values306
Example:Random Sampling and Permutation308
Example:Group Weighted Average and Correlation310
Example:Group-Wise Linear Regression312
10.4 Pivot Tables and Cross-Tabulation313
Cross-Tabulations:Crosstab315
10.5 Conclusion316
11.Time Series317
11.1 Date and Time Data Types and Tools318
Converting Between String and Datetime319
11.2 Time Series Basics322
Indexing,Selection,Subsetting323
Time Series with Duplicate Indices326
11.3 Date Ranges,Frequencies,and Shifting327
Generating Date Ranges328
Frequencies and Date Offsets330
Shifting (Leading and Lagging) Data332
11.4 Time Zone Handling335
Time Zone Localization and Conversion335
Operations with Time Zone-Aware Timestamp Objects338
Operations Between Different Time Zones339
11.5 Periods and Period Arithmetic339
Period Frequency Conversion340
Quarterly Period Frequencies342
Converting Timestamps to Periods (and Back)344
Creating a PeriodIndex from Arrays345
11.6 Resampling and Frequency Conversion348
Downsampling349
Upsampling and Interpolation352
Resampling with Periods353
11.7 Moving Window Functions354
Exponentially Weighted Functions358
Binary Moving Window Functions359
User-Defined Moving Window Functions361
11.8 Conclusion362
12.Advanced pandas363
12.1 Categorical Data363
Background and Motivation363
Categorical Type in pandas365
Computations with Categoricals367
Categorical Methods370
12.2 Advanced GroupBy Use373
Group Transforms and “Unwrapped” GroupBys373
Grouped Time Resampling377
12.3 Techniques for Method Chaining378
The pipe Method380
12.4 Conclusion381
13.Introduction to Modeling Libraries in Python383
13.1 Interfacing Between pandas and Model Code383
13.2 Creating Model Descriptions with Patsy386
Data Transformations in Patsy Formulas389
Categorical Data and Patsy390
13.3 Introduction to statsmodels393
Estimating Linear Models393
Estimating Time Series Processes396
13.4 Introduction to scikit-learn397
13.5 Continuing Your Education401
14.Data Analysis Examples403
14.1 1.USA.gov Data from Bitly403
Counting Time Zones in Pure Python404
Counting Time Zones with pandas406
14.2 MovieLens 1M Dataset413
Measuring Rating Disagreement418
14.3 US Baby Names 1880-2010419
Analyzing Naming Trends425
14.4 USDA Food Database434
14.5 2012 Federal Election Commission Database440
Donation Statistics by Occupation and Employer442
Bucketing Donation Amounts445
Donation Statistics by State447
14.6 Conclusion448
A.Advanced NumPy449
A.1 ndarray Object Internals449
NumPy dtype Hierarchy450
A.2 Advanced Array Manipulation451
Reshaping Arrays452
C Versus Fortran Order454
Concatenating and Splitting Arrays454
Repeating Elements:tile and repeat457
Fancy Indexing Equivalents:take and put459
A.3 Broadcasting460
Broadcasting Over Other Axes462
Setting Array Values by Broadcasting465
A.4 Advanced ufunc Usage466
ufunc Instance Methods466
Writing New ufuncs in Python468
A.5 Structured and Record Arrays469
Nested dtypes and Multidimensional Fields469
Why Use Structured Arrays?470
A.6 More About Sorting471
Indirect Sorts:argsort and lexsort472
Alternative Sort Algorithms474
Partially Sorting Arrays474
numpy.searchsorted:Finding Elements in a Sorted Array475
A.7 Writing Fast NumPy Functions with Numba476
Creating Custom numpy.ufunc Objects with Numba478
A.8 Advanced Array Input and Output478
Memory-Mapped Files478
HDF5 and Other Array Storage Options480
A.9 Performance Tips480
The Importance of Contiguous Memory480
B.More on the IPython System483
B.1 Using the Command History483
Searching and Reusing the Command History483
Input and Output Variables484
B.2 Interacting with the Operating System485
Shell Commands and Aliases486
Directory Bookmark System487
B.3 Software Development Tools487
Interactive Debugger488
Timing Code:%time and %timeit492
Basic Profiling:0016D2C0run and %run-P494
Profiling a Function Line by Line496
B.4 Tips for Productive Code Development Using IPython498
Reloading Module Dependencies498
Code Design Tips499
B.5 Advanced IPython Features500
Making Your Own Classes IPython-Friendly500
Profiles and Configuration501
B.6 Conclusion503
Index505