图书介绍

THEORY OF GRAPHSPDF|Epub|txt|kindle电子书版本下载

THEORY OF GRAPHS
  • OYSTEIN ORE 著
  • 出版社: AMERICAN MATHEMATICAL SOCIETY
  • ISBN:
  • 出版时间:1962
  • 标注页数:270页
  • 文件大小:8MB
  • 文件页数:276页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

THEORY OF GRAPHSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 FUNDAMENTAL CONCEPTS1

1.1 Graph definitions1

1.2 Local degrees7

1.3 Subgraphs12

1.4 Binary relations13

1.5 Incidence matrices18

Chapter 2 CONNECTEDNESS22

2.1 Sequences,paths and arcs22

2.2 Connected components23

2.3 One-to-one correspondences25

2.4 Distances27

2.5 Elongations31

2.6 Matrices and paths.Product graphs33

2.7 Puzzles36

Chapter 3 PATH PROBLEMS38

3.1 Euler paths38

3.2 Euler paths in infinite graphs42

3.3 An excursion into labyrinths47

3.4 Hamilton circuits52

Chapter 4 TREES58

4.1 Properties of trees58

4.2 Centers in trees62

4.3 The circuit rank67

4.4 Many-to-one correspondences68

4.5 Arbitrarily traceable graphs74

Chapter 5 LEAVES AND LOBES78

5.1 Edges and vertices of attachment78

5.2 Leaves81

5.3 Homomorphic graph images83

5.4 Lobes85

5.5 Maximal circuits89

Chapter 6 THE AXIOM OF CHOICE92

6.1 Well-ordering92

6.2 The maximal principles94

6.3 Chain sum properties96

6.4 Maximal exclusion graphs100

6.5 Maximal trees101

6.6 Interrelations between maximal graphs103

Chapter 7 MATCHING THEOREMS106

7.1 Bipartite graphs106

7.2 Deficiencies108

7.3 The matching theorems110

7.4 Mutual matchings113

7.5 Matchings in special graphs117

7.6 Bipartite graphs with positive deficiencies121

7.7 Applications to matrices125

7.8 Alternating paths and maximal matchings132

7.9 Separating sets138

7.10 Simultaneous matchings139

Chapter 8 DIRECTED GRAPHS145

8.1 The inclusion relation and accessible sets145

8.2 The homomorphism theorem149

8.3 Transitive graphs and embedding in order relations150

8.4 Basis graphs152

8.5 Alternating paths156

8.6 Subgraphs of first degree159

Chapter 9 ACYCLIC GRAPHS162

9.1 Basis graphs162

9.2 Deformations of paths163

9.3 Reproduction graphs166

Chapter 10 PARTIAL ORDER170

10.1 Graphs of partial order170

10.2 Representations as sums of ordered sets170

10.3 Lattices and lattice operations.Closure relations175

10.4 Dimension in partial order178

Chapter 11 BINARY RELATIONS AND GALOIS CORRESPONDENCES183

11.1 Galois correspondences183

11.2 Galois connections for binary relations187

11.3 Alternating product relations191

11.4 Ferrers relations193

Chapter 12 CONNECTING PATHS197

12.1 The cross-path theorem197

12.2 Vertex separation200

12.3 Edge separation202

12.4 Deficiency203

Chapter 13 DOMINATING SETS,COVERING SETS AND INDEPENDENT SETS206

13.1 Dominating sets206

13.2 Covering sets and covering graphs208

13.3 Independent sets210

13.4 The theorem of Turan214

13.5 The theorem of Ramsey216

13.6 A problem in information theory220

Chapter 14 CHROMATIC GRAPHS224

14.1 The chromatic number224

14.2 Sums of chromatic graphs227

14.3 Critical graphs229

14.4 Coloration polynomials234

Chapter 15 GROUPS AND GRAPHS239

15.1 Groups of automorphisms239

15.2 Cayley's color graphs for groups242

15.3 Graphs with prescribed groups244

15.4 Edge correspondences245

BIBLIOGRAPHY250

LIST OF CONCEPTS265

INDEX OF NAMES269

热门推荐