图书介绍
THEORY OF GRAPHSPDF|Epub|txt|kindle电子书版本下载
![THEORY OF GRAPHS](https://www.shukui.net/cover/42/31852817.jpg)
- OYSTEIN ORE 著
- 出版社: AMERICAN MATHEMATICAL SOCIETY
- ISBN:
- 出版时间:1962
- 标注页数:270页
- 文件大小:8MB
- 文件页数:276页
- 主题词:
PDF下载
下载说明
THEORY OF GRAPHSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 FUNDAMENTAL CONCEPTS1
1.1 Graph definitions1
1.2 Local degrees7
1.3 Subgraphs12
1.4 Binary relations13
1.5 Incidence matrices18
Chapter 2 CONNECTEDNESS22
2.1 Sequences,paths and arcs22
2.2 Connected components23
2.3 One-to-one correspondences25
2.4 Distances27
2.5 Elongations31
2.6 Matrices and paths.Product graphs33
2.7 Puzzles36
Chapter 3 PATH PROBLEMS38
3.1 Euler paths38
3.2 Euler paths in infinite graphs42
3.3 An excursion into labyrinths47
3.4 Hamilton circuits52
Chapter 4 TREES58
4.1 Properties of trees58
4.2 Centers in trees62
4.3 The circuit rank67
4.4 Many-to-one correspondences68
4.5 Arbitrarily traceable graphs74
Chapter 5 LEAVES AND LOBES78
5.1 Edges and vertices of attachment78
5.2 Leaves81
5.3 Homomorphic graph images83
5.4 Lobes85
5.5 Maximal circuits89
Chapter 6 THE AXIOM OF CHOICE92
6.1 Well-ordering92
6.2 The maximal principles94
6.3 Chain sum properties96
6.4 Maximal exclusion graphs100
6.5 Maximal trees101
6.6 Interrelations between maximal graphs103
Chapter 7 MATCHING THEOREMS106
7.1 Bipartite graphs106
7.2 Deficiencies108
7.3 The matching theorems110
7.4 Mutual matchings113
7.5 Matchings in special graphs117
7.6 Bipartite graphs with positive deficiencies121
7.7 Applications to matrices125
7.8 Alternating paths and maximal matchings132
7.9 Separating sets138
7.10 Simultaneous matchings139
Chapter 8 DIRECTED GRAPHS145
8.1 The inclusion relation and accessible sets145
8.2 The homomorphism theorem149
8.3 Transitive graphs and embedding in order relations150
8.4 Basis graphs152
8.5 Alternating paths156
8.6 Subgraphs of first degree159
Chapter 9 ACYCLIC GRAPHS162
9.1 Basis graphs162
9.2 Deformations of paths163
9.3 Reproduction graphs166
Chapter 10 PARTIAL ORDER170
10.1 Graphs of partial order170
10.2 Representations as sums of ordered sets170
10.3 Lattices and lattice operations.Closure relations175
10.4 Dimension in partial order178
Chapter 11 BINARY RELATIONS AND GALOIS CORRESPONDENCES183
11.1 Galois correspondences183
11.2 Galois connections for binary relations187
11.3 Alternating product relations191
11.4 Ferrers relations193
Chapter 12 CONNECTING PATHS197
12.1 The cross-path theorem197
12.2 Vertex separation200
12.3 Edge separation202
12.4 Deficiency203
Chapter 13 DOMINATING SETS,COVERING SETS AND INDEPENDENT SETS206
13.1 Dominating sets206
13.2 Covering sets and covering graphs208
13.3 Independent sets210
13.4 The theorem of Turan214
13.5 The theorem of Ramsey216
13.6 A problem in information theory220
Chapter 14 CHROMATIC GRAPHS224
14.1 The chromatic number224
14.2 Sums of chromatic graphs227
14.3 Critical graphs229
14.4 Coloration polynomials234
Chapter 15 GROUPS AND GRAPHS239
15.1 Groups of automorphisms239
15.2 Cayley's color graphs for groups242
15.3 Graphs with prescribed groups244
15.4 Edge correspondences245
BIBLIOGRAPHY250
LIST OF CONCEPTS265
INDEX OF NAMES269