图书介绍
complex analysisPDF|Epub|txt|kindle电子书版本下载
![complex analysis](https://www.shukui.net/cover/39/32767584.jpg)
- 著
- 出版社:
- ISBN:
- 出版时间:未知
- 标注页数:0页
- 文件大小:14MB
- 文件页数:330页
- 主题词:
PDF下载
下载说明
complex analysisPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART ONE BASIC THEORY3
Chapter Ⅰ Complex Numbers and Functions3
1 Definition3
2 Polar form8
3 Complex valued functions12
4 Limits and compact sets17
5 Complex differentiability27
6 The Cauchy-Riemann equations31
Chapter Ⅱ Power Series35
1 Formal power series35
2 Convergent power series45
3 Relations between formal and convergent series57
Sums and products57
Quotients60
Composition of series62
4 Holomorphic functions64
5 The inverse and open mapping theorems67
6 The local maximum modulus principle73
7 Differentiation of power series75
Chapter Ⅲ Cauchy’s Theorem, First Part81
1 Analytic functions on connected sets81
2 Integrals over paths88
3 Local primitive for an analytic function96
4 Another description of the integral along a path102
5 The homotopy form of Cauchy’s theorem106
6 Existence of global primitives.Definition of the logarithm108
Chapter Ⅳ Cauchy’s Theorem, Second Part113
1 The winding number113
2 Statement of Cauchy’s theorem117
3 Artin’s proof125
Chapter Ⅴ Applications of Cauchy’s Integral Formula133
1 Cauchy’s integral formula on a disc133
2 Laurent series139
3 Isolated singularities143
4 Dixon’s proof of Cauchy’s theorem148
Chapter Ⅵ Calculus of Residues151
1 The residue formula151
2 Evaluation of definite integrals167
Fourier transforms,169
Trigonometric integrals172
Mellin transforms174
Chapter Ⅶ Conformal Mappings184
1 Schwarz lemma184
2 Analytic automorphisms of the disc185
3 The upper half plane189
4 Other examples190
Chapter Ⅷ Harmonic Functions197
1 Definition197
2 Examples205
3 Construction of harmonic functions212
4 Existence of associated analytic function216
PART TWO VARIOUS ANALYTIC TOPICS221
Chapter Ⅸ Applications of the Maximum Modulus Principle221
1 The effect of zeros, Jensen-Schwarz lemma221
2 The effect of small derivatives226
3 Entire functions with rational values228
4 Phragmen-Lindelof and Hadamard theorems234
5 Bounds by the real part, Borel-Caratheodory theorem238
Chapter Ⅹ Entire and Meromorphic Functions241
1 Infinite products241
2 Weierstrass products244
3 Functions of finite order250
4 Meromorphic functions, Mittag-Leffler theorem252
Chapter Ⅺ Elliptic Functions255
1 The Liouville theorems255
2 The Weierstrass function258
3 The addition theorem262
4 The sigma and zeta functions265
Chapter Ⅻ Differentiating Under an Integral270
1 The differentiation lemma270
2 The gamma function273
Proof of Stirling’s formula277
Chapter ⅩⅢ Analytic Continuation287
1 Schwarz reflection287
2 Continuation along a path292
Chapter ⅩⅣ The Riemann Mapping Theorem299
1 Statement and application to Picard’s theorem299
2 Compact sets in function spaces303
3 Proof of the Riemann mapping theorem306
4 Behavior at the boundary311
Index319