图书介绍

complex analysisPDF|Epub|txt|kindle电子书版本下载

complex analysis
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:14MB
  • 文件页数:330页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

complex analysisPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART ONE BASIC THEORY3

Chapter Ⅰ Complex Numbers and Functions3

1 Definition3

2 Polar form8

3 Complex valued functions12

4 Limits and compact sets17

5 Complex differentiability27

6 The Cauchy-Riemann equations31

Chapter Ⅱ Power Series35

1 Formal power series35

2 Convergent power series45

3 Relations between formal and convergent series57

Sums and products57

Quotients60

Composition of series62

4 Holomorphic functions64

5 The inverse and open mapping theorems67

6 The local maximum modulus principle73

7 Differentiation of power series75

Chapter Ⅲ Cauchy’s Theorem, First Part81

1 Analytic functions on connected sets81

2 Integrals over paths88

3 Local primitive for an analytic function96

4 Another description of the integral along a path102

5 The homotopy form of Cauchy’s theorem106

6 Existence of global primitives.Definition of the logarithm108

Chapter Ⅳ Cauchy’s Theorem, Second Part113

1 The winding number113

2 Statement of Cauchy’s theorem117

3 Artin’s proof125

Chapter Ⅴ Applications of Cauchy’s Integral Formula133

1 Cauchy’s integral formula on a disc133

2 Laurent series139

3 Isolated singularities143

4 Dixon’s proof of Cauchy’s theorem148

Chapter Ⅵ Calculus of Residues151

1 The residue formula151

2 Evaluation of definite integrals167

Fourier transforms,169

Trigonometric integrals172

Mellin transforms174

Chapter Ⅶ Conformal Mappings184

1 Schwarz lemma184

2 Analytic automorphisms of the disc185

3 The upper half plane189

4 Other examples190

Chapter Ⅷ Harmonic Functions197

1 Definition197

2 Examples205

3 Construction of harmonic functions212

4 Existence of associated analytic function216

PART TWO VARIOUS ANALYTIC TOPICS221

Chapter Ⅸ Applications of the Maximum Modulus Principle221

1 The effect of zeros, Jensen-Schwarz lemma221

2 The effect of small derivatives226

3 Entire functions with rational values228

4 Phragmen-Lindelof and Hadamard theorems234

5 Bounds by the real part, Borel-Caratheodory theorem238

Chapter Ⅹ Entire and Meromorphic Functions241

1 Infinite products241

2 Weierstrass products244

3 Functions of finite order250

4 Meromorphic functions, Mittag-Leffler theorem252

Chapter Ⅺ Elliptic Functions255

1 The Liouville theorems255

2 The Weierstrass function258

3 The addition theorem262

4 The sigma and zeta functions265

Chapter Ⅻ Differentiating Under an Integral270

1 The differentiation lemma270

2 The gamma function273

Proof of Stirling’s formula277

Chapter ⅩⅢ Analytic Continuation287

1 Schwarz reflection287

2 Continuation along a path292

Chapter ⅩⅣ The Riemann Mapping Theorem299

1 Statement and application to Picard’s theorem299

2 Compact sets in function spaces303

3 Proof of the Riemann mapping theorem306

4 Behavior at the boundary311

Index319

热门推荐