图书介绍

面向医学治疗的微纳米技术 英文PDF|Epub|txt|kindle电子书版本下载

面向医学治疗的微纳米技术 英文
  • TejalDesai著 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030223395
  • 出版时间:2008
  • 标注页数:373页
  • 文件大小:54MB
  • 文件页数:242页
  • 主题词:纳米材料-应用-医学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

面向医学治疗的微纳米技术 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ.Cell-based Therapeutics1

1.Nano-and Micro-Technology to Spatially and Temporally Control Proteins for Neural Regeneration&Anjana Jain and Ravi V.Bellamkonda3

1.1 Introduction3

1.1.1 Response after Injury in CNS and PNS4

1.1.2 Nano-and Micro-scale Strategies to Promote Axonal Outgrowth in the CNS and PNS4

1.2 Spatially Controlling Proteins6

1.2.1 Spatial Control:Permissive Bioactive Hydrogel Scaffolds for Enhanced Regeneration7

1.2.2 Spatial Control:Chemical vs.Photochemical Crosslinkers for Immobilization of Bioactive Agents8

1.2.3 Other Hydrogel Scaffolds10

1.2.4 Spatial Control:Contact Guidance as a Strategy to Promote Regeneration10

1.2.5 Spatial Control:Nerve Guide Conduits Provide an Environment for Axonal Regeneration11

1.2.6 Spatial Control:Cell-scaffold Constructs as a Way of Combining Permissive Substrates with Stimuli for Regeneration12

1.3 Temporally Controlling the Release of Proteins13

1.3.1 Temporal Control:Osmotic Pumps Release Protein to Encourage Axonal Outgrowth14

1.3.2 Temporal Control:Slow Release of Trophic Factors Using Microspheres15

1.3.3 Temporal Control:Lipid Microtubules for Sustained Release of Stimulatory Trophic Factors16

1.3.4 Temporal Control:Demand Driven Release of Trophic Factors17

1.4 Conclusion17

References18

2.3-D Fabrication Technology for Tissue Engineering&Alice A.Chen,Valerie Liu Tsang,Dirk Albrecht,and Sangeeta N.Bhatia23

2.1 Introduction23

2.2 Fabrication of Acellular Constructs24

2.2.1 Heat-Mediated 3D Fabrication24

2.2.2 Light-Mediated Fabrication27

2.2.3 Adhesive-Mediated Fabrication28

2.2.4 Indirect Fabrication by Molding29

2.3 Fabrication of Cellular Constructs30

2.4 Fabrication of Hybrid Cell/Scaffold Constructs31

2.4.1 Cell-laden Hydrogel Scaffolds by Molding31

2.4.2 Cell-laden Hydrogel Scaffolds by Photopatterning32

2.5 Future Directions34

Acknowledgements36

References36

3.Designed Self-assembling Peptide Nanobiomaterials&Shuguang Zhang and Xiaojun Zhao39

3.1 Introduction40

3.2 Peptide as Biological Material Construction Units40

3.2.1 Lego Peptide41

3.2.2 Surfactant/detergent Peptides42

3.2.3 Molecular Ink Peptides45

3.3 Peptide Nanofiber Scaffold for 3-D Cell Culture,Tissue Engineering and Regenerative Medicine47

3.3.1 Ideal Synthetic Biological Scaffolds47

3.3.2 Peptide Scaffolds48

3.3.3 PuraMatrix in vitro Cell Culture Examples49

3.3.4 Extensive Neurite Outgrowth and Active Synapse Formation on PuraMatrix50

3.3.5 Compatible with Bioproduction and Clinical Application51

3.3.6 Synthetic Origin and Clinical-Grade Quality51

3.3.7 Tailor-Made PuraMatrix51

3.4 Peptide Surfactants/Detergents Stabilize Membrane Proteins52

3.5 Perspective and Remarks52

Acknowledgements53

References53

4.At the Interface:Advanced Microfluidic Assays for Study of Cell Function&Yoko Kamotani,Dongeun Huh,Nobuyuki Futai,and Shuichi Takayama55

4.1 Introduction55

4.2 Microfabrication56

4.2.1 Soft Lithography57

4.3 Microscale Phenomena58

4.3.1 Scaling Effects59

4.3.2 Laminar Flow59

4.3.3 Surface Tension60

4.4 Examples of Advanced Microfluidic Cellular Bioassays61

4.4.1 Patterning with Individual Microfluidic Channels61

4.4.2 Multiple Laminar Streams63

4.4.3 PARTCELL66

4.4.4 Microscale Integrated Sperm Sorter(MISS)68

4.4.5 Air-Sheath Flow Cytometry69

4.4.6 Immunoassays71

4.5 Conclusion75

References75

5.Multi-phenotypic Cellular Arrays for Biosensing&Laura J.Itle,Won-Gun Koh,and Michael V.Pishko79

5.1 Introduction79

5.2 Fabrication of Multi-Phenotypic Arrays81

5.2.1 Surface Patterning81

5.2.2 Photolithography81

5.2.3 Soft Lithography82

5.2.4 Poly(ethylene) Glycol Hydrogels83

5.3 Detection methods for cell based sensors84

5.3.1 Microelectronics84

5.3.2 Fluorescent Markers For Gene Expression and Protein Up-regulation84

5.3.3 Intracellular Fluorescent Probes for Small Molecules86

5.4 Current Examples of Multi-Phenotypic Arrays87

5.5 Future Work88

References90

6.MEMS and Neurosurgery&Shuvo Roy,Lisa A.Ferrara,Aaron J.Fleischman,and Edward C.Benzel95

Part Ⅰ:Background95

6.1 What is Neurosurgery?95

6.2 History of Neurosurgery95

6.3 Conventional Neurosurgical Treatments99

6.3.1 Hydrocephalus99

6.3.2 Brain Tumors101

6.3.3 Parkinson Disease103

6.3.4 Degenerative Disease of the Spine104

6.4 Evolution of Neurosurgery106

Part Ⅱ:Applications107

6.5 MEMS for Neurosurgery107

6.6 Obstacles to Neurosurgical Employment of MEMS108

6.6.1 Biocompatibility Assessment109

6.7 Opportunities110

6.7.1 Intracranial Pressure Monitoring110

6.7.2 Neural Prostheses112

6.7.3 Drug Delivery Systems113

6.7.4 Smart Surgical Instruments and Minimally Invasive Surgery114

6.7.5 In Vivo Spine Biomechanics116

6.7.6 Neural Regeneration118

6.8 Prospects for MEMS in Neurosurgery120

Acknowledgements120

References120

Ⅱ.Drug Delivery125

7.Vascular Zip Codes and Nanoparticle Targeting&Erkki Ruoslahti127

7.1 Introduction127

7.2 In vivo Phage Display in Vascular Analysis128

7.3 Tissue-Specific Zip Codes in Blood Vessels128

7.4 Special Features of Vessels in Disease129

7.5 Delivery of Diagnostic and Therapeutic Agents to Vascular Targets131

7.6 Homing Peptides for Subcellular Targeting131

7.7 Nanoparticle Targeting132

7.8 Future Directions133

Acknowledgements134

References134

8.Engineering Biocompatible Quantum Dots for Ultrasensitive,Real-Time Biological Imaging and Detection&Wen Jiang,Anupam Singhal,Hans Fischer,Sawitri Mardyani,and Warren C.W.Chan137

8.1 Introduction137

8.2 Synthesis and Surface Chemistry138

8.2.1 Synthesis of QDs that are Soluble in Organic Solvents138

8.2.2 Modification of Surface Chemistry of QDs for Biological Applications141

8.3 Optical Properties142

8.4 Applications146

8.4.1 In Vitro Immunoassays & Nanosensors146

8.4.2 Cell Labeling and Tracking Experiments149

8.4.3 In Vivo Live Animal Imaging150

8.5 Future Work152

Acknowledgements152

References152

9.Diagnostic and Therapeutic Applications of Metal Nanoshells&Leon R.Hirsch,Rebekah A.Drezek,Naomi J.Halas,and Jennifer L.West157

9.1 Metal Nanoshells157

9.2 Biomedical Applications of Gold Nanoshells161

9.2.1 Nanoshells for Immunoassays161

9.2.2 Photothermally-modulated Drug Delivery Using Nanoshell-Hydrogel Composites162

9.2.3 Photothermal Ablation165

9.2.4 Nanoshells for Molecular Imaging166

References168

10.Nanoporous Microsystems for Islet Cell Replacement&Tejal A.Desai,Teri West,Michael Cohen,Tony Boiarski,and Arfaan Rampersaud171

10.1 Introduction171

10.1.1 The Science of Miniaturization(MEMS and BioMEMS)171

10.1.2 Cellular Delivery and Encapsulation172

10.1.3 Microfabricated Nanoporous Biocapsule174

10.2 Fabrication of Nanoporous Membranes175

10.3 Biocapsule Assembly and Loading178

10.4 Biocompatibility of Nanoporous Membranes and Biocapsular Environment179

10.5 Microfabricated Biocapsule Membrane Diffusion Studies181

10.5.1 IgG Diffusion183

10.6 Matrix Materials Inside the Biocapsule185

10.6.1 In-Vivo Studies187

10.6.2 Histology188

Conclusion189

Acknowledgements189

References189

11.Medical Nanotechnology and Pulmonary Pathology&Amy Pope-Harman and Mauro Ferrari193

11.1 Introduction193

11.1.1 Today's Medical Environment194

11.1.2 Challenges for Pulmonary Disease-Directed Nanotechnology Devices195

11.2 Current Applications of Medical Technology in the Lungs196

11.2.1 Molecularly-derived Therapeutics196

11.2.2 Liposomes197

11.2.3 Devices with Nanometer-scale Features198

11.3 Potential uses of Nanotechnology in Pulmonary Diseases198

11.3.1 Diagnostics198

11.3.2 Therapeutics200

11.3.3 Evolving Nanotechnology in Pulmonary Diseases203

11.4 Conclusion207

References208

12.Nanodesigned Pore-Containing Systems for Biosensing and Controlled Drug Release&Frédérique Cunin,Yang Yang Li,and Michael J.Sailor213

12.1 System Design Considerations214

12.2 Porous Material-Based Systems214

12.3 Silicon-Based Porous Materials215

12.4 "Obedient"Materials216

12.5 Porous Silicon216

12.6 Templated Nanomaterials217

12.7 Photonic Crystals as Self-Reporting Biomaterials217

12.8 Using Porous Si as a Template for Optical Nanostructures217

12.9 Outlook for Nanotechnology in Pharmaceutical Research219

Acknowledgements219

References220

13.Transdermal Drug Delivery using Low-Frequency Sonophoresis&Samir Mitragotri223

13.1 Introduction223

13.1.1 Avoiding Drug Degradation in Gastrointestinal Tract223

13.1.2 Better Patient Compliance223

13.1.3 Sustained Release of the Drug can be Obtained224

13.2 Ultrasound in Medical Applications224

13.3 Sonophoresis:Ultrasound-Mediated Transdermal Transport224

13.4 Low-Frequency Sonophoresis225

13.5 Low-Frequency Sonophoresis:Choice of Parameters226

13.6 Macromolecular Delivery226

13.6.1 Peptides and Proteins226

13.6.2 Low-molecular Weight Heparin227

13.6.3 Oligonucleotides228

13.6.4 Vaccines228

13.7 Transdermal Glucose Extraction Using Sonophoresis229

13.8 Mechanisms of Low-Frequency Sonophoresis230

13.9 Conclusions232

References232

14.Microdevices for Oral Drug Delivery&Sarah L.Tao and Tejal A.Desai237

14.1 Introduction237

14.1.1 Current Challenges in Drug Delivery237

14.1.2 Oral Drug Delivery238

14.1.3 Bioadhesion in the Gastrointestinal Tract238

14.1.4 Microdevice Technology240

14.2 Materials241

14.2.1 Silicon Dioxide242

14.2.2 Porous Silicon242

14.2.3 Poly(methyl methacrylate)242

14.3 Microfabrication243

14.3.1 Silicon Dioxide[23]243

14.3.2 Porous Silicon[25]244

14.3.3 Pol(methyl methacrylate)[24]246

14.4 Surface Chemistry247

14.4.1 Aimine Functionalization249

14.4.2 Avidin Immobilization251

14.4.3 Lectin Conjugation251

14.5 Surface Characterization251

14.6 Miocrodevice Loading and Release Mechanisms253

14.6.1 Welled Silicon Dioxide and PMMA Microdevices254

14.6.2 Porous Silicon Microdevices254

14.6.3 CACO-2 In Vitro Studies255

14.6.4 Cell Culture Conditions255

14.6.5 Assessing Confluency and Tight Junction Formation256

14.6.6 Adhesion of Lectin-Modified Microdeviees256

14.6.7 Bioavailibility Studies257

Acknowledgements258

References259

15.Nanoporous Implants for Controlled Drug Delivery&Tejal A.Desai,Sadhana Sharma,Robbie J.Walczak,Anthony Boiarski,Michael Cohen,John Shapiro,Teri West,Kristie Melnik,Carlo Cosentino,Piyush M.Sinha,and Mauro Ferrari263

15.1 Introduction263

15.1.1 Concept of Controlled Drug Delivery263

15.1.2 Nanopore Technology264

15.1.3 Comparison of Nanopore Technology with Existing Drug Delivery Technologies267

15.2 Fabrication of Nanoporous Membranes269

15.3 Implant Assembly and Loading271

15.4 Nanoporous Implant Diffusion Studies271

15.4.1 Interferon Release Data272

15.4.2 Bovine Serum Albumin Release Data273

15.4.3 Results Interpretation275

15.4.4 Modeling and Data Fitting276

15.5 Biocompatibility of Nanoporous Implants277

15.5.1 In Vivo Biocompatibility Evaluation278

15.5.2 Long-Term Lysozyme Diffusion Studies279

15.5.3 In Vivo/In Vitro Correlation281

15.5.4 Post-Implant Diffusion Data282

15.6 Conclusions283

References283

Ⅲ.Molecular Surface Engineering for the Biological Interface287

16.Micro and Nanoscale Smart Polymer Technologies in Biomedicine&Samarth Kulkarni,Noah Malmstadt,Allan S.Hoffman,and Patrick S.Stayton289

16.1 Smart Polymers290

16.1.1 Mechanism of Aggregation290

16.2 Smart Meso-Scale Particle Systems291

16.2.1 Introduction291

16.2.2 Preparation of PNIPAAm-Streptavidin Particle System293

16.2.3 Mechanism of Aggregation293

16.2.4 Properties of PNIPAAm-Streptavidin Particle System293

16.2.5 Protein Switching in Solution using Aggregation Switch294

16.2.6 Potential uses of Smart Polymer Particles in Diagnostics and Therapy296

16.3 Smart Bead Based Microfluidic Chromatography296

16.3.1 Introduction296

16.3.2 Preparation of Smart Beads297

16.3.3 Microfluidic Devices for Bioanalysis298

16.3.4 Microfluidic Affinity Chromatography Using Smart Beads298

16.3.5 Microfluidic Immunoassay Using SmartBeads301

16.3.6 Smart Polymer Based Microtechnology—Future Outlook301

Acknowledgements301

References302

17.Supported Lipid Bilayers as Mimics for Cell Surfaces&Jay T.Groves305

17.1 Introduction305

17.2 Physical Characteristics306

17.3 Fabrication Methodologies310

17.4 Applications313

17.4.1 Membrane Arrays313

17.4.2 Membrane-Coated Beads314

17.4.3 Electrical Manipulation316

17.4.4 Live Cell Interactions317

17.5 Conclusion319

References320

18.Engineering Cell Adhesion&Kiran Bhadriraju,Wendy Liu,Darren Gray,and Christopher S.Chen325

18.1 Introduction325

18.2 Regulating Cell Function via the Adhesive Microenvironment327

18.3 Controlling Cell Interactions with the Surrounding Environment330

18.3.1 Creating Defined Surface Chemistries330

18.3.2 The Development of Surface Patterning332

18.3.3 Examples of Patterning-Based Studies on Cell-To-Cell Interactions333

18.3.4 Examples of Patterning-Based Studies on Cell-Matrix Interactions336

18.4 Future Work337

18.4.1 Developing New Materials337

18.4.2 Better Cell Positioning Technologies338

18.4.3 Patterning in 3D Environments338

18.4.4 Patterning Substrate Mechanics339

18.5 Conclusions339

References340

19.Cell Biology on a Chip&Albert Folch and Anna Tourovskaia345

19.1 Introduction345

19.2 The Lab-on-a-chip Revolution346

19.3 Increasing Experimentation Throughput347

19.3.1 From Serial Pipetting to Highly Parallel Micromixers347

19.3.2 From Incubators to"Chip-Cubators"349

19.3-3 From High Cell Numbers in Large Volumes(and Large Areas)to Low Cell Numbers in Small Volumes(and Small Areas)349

19.3.4 From Milliliters to Microliters or Nanoliters350

19.3.5 From Manual/Robotic Pipetting to Microfluidic Pumps and Valves351

19.3.6 Single-Cell Probing and Manipulation354

19.4 Increasing the Complexity of the Cellular Microenvironment354

19.4.1 From Random Cultures to Microengineered Substrates355

19.4.2 From"Classical"to"Novel"Substrates356

19.4.3 From Cells in Large Static Volumes to Cells in Small Flowing Volumes359

19.4.4 From a Homogeneous Bath to Microfluidic Delivery of Biochemical Factors359

19.5 Conclusion360

References360

About the Editors365

Index367

热门推荐