图书介绍
面向医学治疗的微纳米技术 英文PDF|Epub|txt|kindle电子书版本下载
![面向医学治疗的微纳米技术 英文](https://www.shukui.net/cover/67/33225870.jpg)
- TejalDesai著 著
- 出版社: 北京:科学出版社
- ISBN:9787030223395
- 出版时间:2008
- 标注页数:373页
- 文件大小:54MB
- 文件页数:242页
- 主题词:纳米材料-应用-医学-英文
PDF下载
下载说明
面向医学治疗的微纳米技术 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ.Cell-based Therapeutics1
1.Nano-and Micro-Technology to Spatially and Temporally Control Proteins for Neural Regeneration&Anjana Jain and Ravi V.Bellamkonda3
1.1 Introduction3
1.1.1 Response after Injury in CNS and PNS4
1.1.2 Nano-and Micro-scale Strategies to Promote Axonal Outgrowth in the CNS and PNS4
1.2 Spatially Controlling Proteins6
1.2.1 Spatial Control:Permissive Bioactive Hydrogel Scaffolds for Enhanced Regeneration7
1.2.2 Spatial Control:Chemical vs.Photochemical Crosslinkers for Immobilization of Bioactive Agents8
1.2.3 Other Hydrogel Scaffolds10
1.2.4 Spatial Control:Contact Guidance as a Strategy to Promote Regeneration10
1.2.5 Spatial Control:Nerve Guide Conduits Provide an Environment for Axonal Regeneration11
1.2.6 Spatial Control:Cell-scaffold Constructs as a Way of Combining Permissive Substrates with Stimuli for Regeneration12
1.3 Temporally Controlling the Release of Proteins13
1.3.1 Temporal Control:Osmotic Pumps Release Protein to Encourage Axonal Outgrowth14
1.3.2 Temporal Control:Slow Release of Trophic Factors Using Microspheres15
1.3.3 Temporal Control:Lipid Microtubules for Sustained Release of Stimulatory Trophic Factors16
1.3.4 Temporal Control:Demand Driven Release of Trophic Factors17
1.4 Conclusion17
References18
2.3-D Fabrication Technology for Tissue Engineering&Alice A.Chen,Valerie Liu Tsang,Dirk Albrecht,and Sangeeta N.Bhatia23
2.1 Introduction23
2.2 Fabrication of Acellular Constructs24
2.2.1 Heat-Mediated 3D Fabrication24
2.2.2 Light-Mediated Fabrication27
2.2.3 Adhesive-Mediated Fabrication28
2.2.4 Indirect Fabrication by Molding29
2.3 Fabrication of Cellular Constructs30
2.4 Fabrication of Hybrid Cell/Scaffold Constructs31
2.4.1 Cell-laden Hydrogel Scaffolds by Molding31
2.4.2 Cell-laden Hydrogel Scaffolds by Photopatterning32
2.5 Future Directions34
Acknowledgements36
References36
3.Designed Self-assembling Peptide Nanobiomaterials&Shuguang Zhang and Xiaojun Zhao39
3.1 Introduction40
3.2 Peptide as Biological Material Construction Units40
3.2.1 Lego Peptide41
3.2.2 Surfactant/detergent Peptides42
3.2.3 Molecular Ink Peptides45
3.3 Peptide Nanofiber Scaffold for 3-D Cell Culture,Tissue Engineering and Regenerative Medicine47
3.3.1 Ideal Synthetic Biological Scaffolds47
3.3.2 Peptide Scaffolds48
3.3.3 PuraMatrix in vitro Cell Culture Examples49
3.3.4 Extensive Neurite Outgrowth and Active Synapse Formation on PuraMatrix50
3.3.5 Compatible with Bioproduction and Clinical Application51
3.3.6 Synthetic Origin and Clinical-Grade Quality51
3.3.7 Tailor-Made PuraMatrix51
3.4 Peptide Surfactants/Detergents Stabilize Membrane Proteins52
3.5 Perspective and Remarks52
Acknowledgements53
References53
4.At the Interface:Advanced Microfluidic Assays for Study of Cell Function&Yoko Kamotani,Dongeun Huh,Nobuyuki Futai,and Shuichi Takayama55
4.1 Introduction55
4.2 Microfabrication56
4.2.1 Soft Lithography57
4.3 Microscale Phenomena58
4.3.1 Scaling Effects59
4.3.2 Laminar Flow59
4.3.3 Surface Tension60
4.4 Examples of Advanced Microfluidic Cellular Bioassays61
4.4.1 Patterning with Individual Microfluidic Channels61
4.4.2 Multiple Laminar Streams63
4.4.3 PARTCELL66
4.4.4 Microscale Integrated Sperm Sorter(MISS)68
4.4.5 Air-Sheath Flow Cytometry69
4.4.6 Immunoassays71
4.5 Conclusion75
References75
5.Multi-phenotypic Cellular Arrays for Biosensing&Laura J.Itle,Won-Gun Koh,and Michael V.Pishko79
5.1 Introduction79
5.2 Fabrication of Multi-Phenotypic Arrays81
5.2.1 Surface Patterning81
5.2.2 Photolithography81
5.2.3 Soft Lithography82
5.2.4 Poly(ethylene) Glycol Hydrogels83
5.3 Detection methods for cell based sensors84
5.3.1 Microelectronics84
5.3.2 Fluorescent Markers For Gene Expression and Protein Up-regulation84
5.3.3 Intracellular Fluorescent Probes for Small Molecules86
5.4 Current Examples of Multi-Phenotypic Arrays87
5.5 Future Work88
References90
6.MEMS and Neurosurgery&Shuvo Roy,Lisa A.Ferrara,Aaron J.Fleischman,and Edward C.Benzel95
Part Ⅰ:Background95
6.1 What is Neurosurgery?95
6.2 History of Neurosurgery95
6.3 Conventional Neurosurgical Treatments99
6.3.1 Hydrocephalus99
6.3.2 Brain Tumors101
6.3.3 Parkinson Disease103
6.3.4 Degenerative Disease of the Spine104
6.4 Evolution of Neurosurgery106
Part Ⅱ:Applications107
6.5 MEMS for Neurosurgery107
6.6 Obstacles to Neurosurgical Employment of MEMS108
6.6.1 Biocompatibility Assessment109
6.7 Opportunities110
6.7.1 Intracranial Pressure Monitoring110
6.7.2 Neural Prostheses112
6.7.3 Drug Delivery Systems113
6.7.4 Smart Surgical Instruments and Minimally Invasive Surgery114
6.7.5 In Vivo Spine Biomechanics116
6.7.6 Neural Regeneration118
6.8 Prospects for MEMS in Neurosurgery120
Acknowledgements120
References120
Ⅱ.Drug Delivery125
7.Vascular Zip Codes and Nanoparticle Targeting&Erkki Ruoslahti127
7.1 Introduction127
7.2 In vivo Phage Display in Vascular Analysis128
7.3 Tissue-Specific Zip Codes in Blood Vessels128
7.4 Special Features of Vessels in Disease129
7.5 Delivery of Diagnostic and Therapeutic Agents to Vascular Targets131
7.6 Homing Peptides for Subcellular Targeting131
7.7 Nanoparticle Targeting132
7.8 Future Directions133
Acknowledgements134
References134
8.Engineering Biocompatible Quantum Dots for Ultrasensitive,Real-Time Biological Imaging and Detection&Wen Jiang,Anupam Singhal,Hans Fischer,Sawitri Mardyani,and Warren C.W.Chan137
8.1 Introduction137
8.2 Synthesis and Surface Chemistry138
8.2.1 Synthesis of QDs that are Soluble in Organic Solvents138
8.2.2 Modification of Surface Chemistry of QDs for Biological Applications141
8.3 Optical Properties142
8.4 Applications146
8.4.1 In Vitro Immunoassays & Nanosensors146
8.4.2 Cell Labeling and Tracking Experiments149
8.4.3 In Vivo Live Animal Imaging150
8.5 Future Work152
Acknowledgements152
References152
9.Diagnostic and Therapeutic Applications of Metal Nanoshells&Leon R.Hirsch,Rebekah A.Drezek,Naomi J.Halas,and Jennifer L.West157
9.1 Metal Nanoshells157
9.2 Biomedical Applications of Gold Nanoshells161
9.2.1 Nanoshells for Immunoassays161
9.2.2 Photothermally-modulated Drug Delivery Using Nanoshell-Hydrogel Composites162
9.2.3 Photothermal Ablation165
9.2.4 Nanoshells for Molecular Imaging166
References168
10.Nanoporous Microsystems for Islet Cell Replacement&Tejal A.Desai,Teri West,Michael Cohen,Tony Boiarski,and Arfaan Rampersaud171
10.1 Introduction171
10.1.1 The Science of Miniaturization(MEMS and BioMEMS)171
10.1.2 Cellular Delivery and Encapsulation172
10.1.3 Microfabricated Nanoporous Biocapsule174
10.2 Fabrication of Nanoporous Membranes175
10.3 Biocapsule Assembly and Loading178
10.4 Biocompatibility of Nanoporous Membranes and Biocapsular Environment179
10.5 Microfabricated Biocapsule Membrane Diffusion Studies181
10.5.1 IgG Diffusion183
10.6 Matrix Materials Inside the Biocapsule185
10.6.1 In-Vivo Studies187
10.6.2 Histology188
Conclusion189
Acknowledgements189
References189
11.Medical Nanotechnology and Pulmonary Pathology&Amy Pope-Harman and Mauro Ferrari193
11.1 Introduction193
11.1.1 Today's Medical Environment194
11.1.2 Challenges for Pulmonary Disease-Directed Nanotechnology Devices195
11.2 Current Applications of Medical Technology in the Lungs196
11.2.1 Molecularly-derived Therapeutics196
11.2.2 Liposomes197
11.2.3 Devices with Nanometer-scale Features198
11.3 Potential uses of Nanotechnology in Pulmonary Diseases198
11.3.1 Diagnostics198
11.3.2 Therapeutics200
11.3.3 Evolving Nanotechnology in Pulmonary Diseases203
11.4 Conclusion207
References208
12.Nanodesigned Pore-Containing Systems for Biosensing and Controlled Drug Release&Frédérique Cunin,Yang Yang Li,and Michael J.Sailor213
12.1 System Design Considerations214
12.2 Porous Material-Based Systems214
12.3 Silicon-Based Porous Materials215
12.4 "Obedient"Materials216
12.5 Porous Silicon216
12.6 Templated Nanomaterials217
12.7 Photonic Crystals as Self-Reporting Biomaterials217
12.8 Using Porous Si as a Template for Optical Nanostructures217
12.9 Outlook for Nanotechnology in Pharmaceutical Research219
Acknowledgements219
References220
13.Transdermal Drug Delivery using Low-Frequency Sonophoresis&Samir Mitragotri223
13.1 Introduction223
13.1.1 Avoiding Drug Degradation in Gastrointestinal Tract223
13.1.2 Better Patient Compliance223
13.1.3 Sustained Release of the Drug can be Obtained224
13.2 Ultrasound in Medical Applications224
13.3 Sonophoresis:Ultrasound-Mediated Transdermal Transport224
13.4 Low-Frequency Sonophoresis225
13.5 Low-Frequency Sonophoresis:Choice of Parameters226
13.6 Macromolecular Delivery226
13.6.1 Peptides and Proteins226
13.6.2 Low-molecular Weight Heparin227
13.6.3 Oligonucleotides228
13.6.4 Vaccines228
13.7 Transdermal Glucose Extraction Using Sonophoresis229
13.8 Mechanisms of Low-Frequency Sonophoresis230
13.9 Conclusions232
References232
14.Microdevices for Oral Drug Delivery&Sarah L.Tao and Tejal A.Desai237
14.1 Introduction237
14.1.1 Current Challenges in Drug Delivery237
14.1.2 Oral Drug Delivery238
14.1.3 Bioadhesion in the Gastrointestinal Tract238
14.1.4 Microdevice Technology240
14.2 Materials241
14.2.1 Silicon Dioxide242
14.2.2 Porous Silicon242
14.2.3 Poly(methyl methacrylate)242
14.3 Microfabrication243
14.3.1 Silicon Dioxide[23]243
14.3.2 Porous Silicon[25]244
14.3.3 Pol(methyl methacrylate)[24]246
14.4 Surface Chemistry247
14.4.1 Aimine Functionalization249
14.4.2 Avidin Immobilization251
14.4.3 Lectin Conjugation251
14.5 Surface Characterization251
14.6 Miocrodevice Loading and Release Mechanisms253
14.6.1 Welled Silicon Dioxide and PMMA Microdevices254
14.6.2 Porous Silicon Microdevices254
14.6.3 CACO-2 In Vitro Studies255
14.6.4 Cell Culture Conditions255
14.6.5 Assessing Confluency and Tight Junction Formation256
14.6.6 Adhesion of Lectin-Modified Microdeviees256
14.6.7 Bioavailibility Studies257
Acknowledgements258
References259
15.Nanoporous Implants for Controlled Drug Delivery&Tejal A.Desai,Sadhana Sharma,Robbie J.Walczak,Anthony Boiarski,Michael Cohen,John Shapiro,Teri West,Kristie Melnik,Carlo Cosentino,Piyush M.Sinha,and Mauro Ferrari263
15.1 Introduction263
15.1.1 Concept of Controlled Drug Delivery263
15.1.2 Nanopore Technology264
15.1.3 Comparison of Nanopore Technology with Existing Drug Delivery Technologies267
15.2 Fabrication of Nanoporous Membranes269
15.3 Implant Assembly and Loading271
15.4 Nanoporous Implant Diffusion Studies271
15.4.1 Interferon Release Data272
15.4.2 Bovine Serum Albumin Release Data273
15.4.3 Results Interpretation275
15.4.4 Modeling and Data Fitting276
15.5 Biocompatibility of Nanoporous Implants277
15.5.1 In Vivo Biocompatibility Evaluation278
15.5.2 Long-Term Lysozyme Diffusion Studies279
15.5.3 In Vivo/In Vitro Correlation281
15.5.4 Post-Implant Diffusion Data282
15.6 Conclusions283
References283
Ⅲ.Molecular Surface Engineering for the Biological Interface287
16.Micro and Nanoscale Smart Polymer Technologies in Biomedicine&Samarth Kulkarni,Noah Malmstadt,Allan S.Hoffman,and Patrick S.Stayton289
16.1 Smart Polymers290
16.1.1 Mechanism of Aggregation290
16.2 Smart Meso-Scale Particle Systems291
16.2.1 Introduction291
16.2.2 Preparation of PNIPAAm-Streptavidin Particle System293
16.2.3 Mechanism of Aggregation293
16.2.4 Properties of PNIPAAm-Streptavidin Particle System293
16.2.5 Protein Switching in Solution using Aggregation Switch294
16.2.6 Potential uses of Smart Polymer Particles in Diagnostics and Therapy296
16.3 Smart Bead Based Microfluidic Chromatography296
16.3.1 Introduction296
16.3.2 Preparation of Smart Beads297
16.3.3 Microfluidic Devices for Bioanalysis298
16.3.4 Microfluidic Affinity Chromatography Using Smart Beads298
16.3.5 Microfluidic Immunoassay Using SmartBeads301
16.3.6 Smart Polymer Based Microtechnology—Future Outlook301
Acknowledgements301
References302
17.Supported Lipid Bilayers as Mimics for Cell Surfaces&Jay T.Groves305
17.1 Introduction305
17.2 Physical Characteristics306
17.3 Fabrication Methodologies310
17.4 Applications313
17.4.1 Membrane Arrays313
17.4.2 Membrane-Coated Beads314
17.4.3 Electrical Manipulation316
17.4.4 Live Cell Interactions317
17.5 Conclusion319
References320
18.Engineering Cell Adhesion&Kiran Bhadriraju,Wendy Liu,Darren Gray,and Christopher S.Chen325
18.1 Introduction325
18.2 Regulating Cell Function via the Adhesive Microenvironment327
18.3 Controlling Cell Interactions with the Surrounding Environment330
18.3.1 Creating Defined Surface Chemistries330
18.3.2 The Development of Surface Patterning332
18.3.3 Examples of Patterning-Based Studies on Cell-To-Cell Interactions333
18.3.4 Examples of Patterning-Based Studies on Cell-Matrix Interactions336
18.4 Future Work337
18.4.1 Developing New Materials337
18.4.2 Better Cell Positioning Technologies338
18.4.3 Patterning in 3D Environments338
18.4.4 Patterning Substrate Mechanics339
18.5 Conclusions339
References340
19.Cell Biology on a Chip&Albert Folch and Anna Tourovskaia345
19.1 Introduction345
19.2 The Lab-on-a-chip Revolution346
19.3 Increasing Experimentation Throughput347
19.3.1 From Serial Pipetting to Highly Parallel Micromixers347
19.3.2 From Incubators to"Chip-Cubators"349
19.3-3 From High Cell Numbers in Large Volumes(and Large Areas)to Low Cell Numbers in Small Volumes(and Small Areas)349
19.3.4 From Milliliters to Microliters or Nanoliters350
19.3.5 From Manual/Robotic Pipetting to Microfluidic Pumps and Valves351
19.3.6 Single-Cell Probing and Manipulation354
19.4 Increasing the Complexity of the Cellular Microenvironment354
19.4.1 From Random Cultures to Microengineered Substrates355
19.4.2 From"Classical"to"Novel"Substrates356
19.4.3 From Cells in Large Static Volumes to Cells in Small Flowing Volumes359
19.4.4 From a Homogeneous Bath to Microfluidic Delivery of Biochemical Factors359
19.5 Conclusion360
References360
About the Editors365
Index367