图书介绍
DIGITAL IMAGE PROCESSING USING MATLABPDF|Epub|txt|kindle电子书版本下载
![DIGITAL IMAGE PROCESSING USING MATLAB](https://www.shukui.net/cover/46/33515055.jpg)
- (美)RAFAEL C.GONZALEZ RICHARD E.WOODS STEVEN L.EDDINS著 著
- 出版社: 电子工业出版社
- ISBN:
- 出版时间:2009
- 标注页数:609页
- 文件大小:102MB
- 文件页数:626页
- 主题词:
PDF下载
下载说明
DIGITAL IMAGE PROCESSING USING MATLABPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
Preview1
1.1 Background1
1.2 What Is Digital Image Processing?2
1.3 Background on MATLAB and the Image Processing Toolbox4
1.4 Areas of Image Processing Covered in the Book5
1.5 The Book Web Site6
1.6 Notation7
1.7 The MATLAB Working Environment7
1.7.1 The MATLAB Desktop7
1.7.2 Using the MATLAB Editor to Create M-Files9
1.7.3 Getting Help9
1.7.4 Saving and Retrieving a Work Session10
1.8 How References Are Organized in the Book11
Summary11
2 Fundamentals12
Preview12
2.1 Digital Image Representation12
2.1.1 Coordinate Conventions13
2.1.2 Images as Matrices14
2.2 Reading Images14
2.3 Displaying Images16
2.4 Writing Images18
2.5 Data Classes23
2.6 Image Types24
2.6.1 Intensity Images24
2.6.2 Binary Images25
2.6.3 A Note on Terminology25
2.7 Converting between Data Classes and Image Types25
2.7.1 Converting between Data Classes25
2.7.2 Converting between Image Classes and Types26
2.8 Array Indexing30
2.8.1 Vector Indexing30
2.8.2 Matrix Indexing32
2.8.3 Selecting Array Dimensions37
2.9 Some Important Standard Arrays37
2.10 Introduction to M-Function Programming38
2.10.1 M-Files38
2.10.2 Operators40
2.10.3 Flow Control49
2.10.4 Code Optimization55
2.10.5 Interactive I/O59
2.10.6 A Brief Introduction to Cell Arrays and Structures62
Summary64
3 Intensity Transformations and Spatial Filtering65
Preview65
3.1 Background65
3.2 Intensity Transformation Functions66
3.2.1 Function imadjust66
3.2.2 Logarithmic and Contrast-Stretching Transformations68
3.2.3 Some Utility M-Functions for Intensity Transformations70
3.3 Histogram Processing and Function Plotting76
3.3.1 Generating and Plotting Image Histograms76
3.3.2 Histogram Equalization81
3.3.3 Histogram Matching (Specification)84
3.4 Spatial Filtering89
3.4.1 Linear Spatial Filtering89
3.4.2 Nonlinear Spatial Filtering96
3.5 Image Processing Toolbox Standard Spatial Filters99
3.5.1 Linear Spatial Filters99
3.5.2 Nonlinear Spatial Filters104
Summary107
4 Frequency Domain Processing108
Preview108
4.1 The 2-D Discrete Fourier Transform108
4.2 Computing and Visualizing the 2-D DFT in MATLAB112
4.3 Filtering in the Frequency Domain115
4.3.1 Fundamental Concepts115
4.3.2 Basic Steps in DFT Filtering121
4.3.3 An M-function for Filtering in the Frequency Domain122
4.4 Obtaining Frequency Domain Filters from Spatial Filters122
4.5 Generating Filters Directly in the Frequency Domain127
4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters in the Frequency Domain128
4.5.2 Lowpass Frequency Domain Filters129
4.5.3 Wireframe and Surface Plotting132
4.6 Sharpening Frequency Domain Filters136
4.6.1 Basic Highpass Filtering136
4.6.2 High-Frequency Emphasis Filtering138
Summary140
5 Image Restoration141
Preview141
5.1 A Model of the Image Degradation/Restoration Process142
5.2 Noise Models143
5.2.1 Adding Noise with Function imnoise143
5.2.2 Generating Spatial Random Noise with a Specified Distribution144
5.2.3 Periodic Noise150
5.2.4 Estimating Noise Parameters153
5.3 Restoration in the Presence of Noise Only—Spatial Filtering158
5.3.1 Spatial Noise Filters159
5.3.2 Adaptive Spatial Filters164
5.4 Periodic Noise Reduction by Frequency Domain Filtering166
5.5 Modeling the Degradation Function166
5.6 Direct Inverse Filtering169
5.7 Wiener Filtering170
5.8 Constrained Least Squares (Regularized) Filtering173
5.9 Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm176
5.10 Blind Deconvolution179
5.11 Geometric Transformations and Image Registration182
5.11.1 Geometric Spatial Transformations182
5.11.2 Applying Spatial Transformations to Images187
5.11.3 Image Registration191
Summary193
6 Color Image Processing194
Preview194
6.1 Color Image Representation in MATLAB194
6.1.1 RGB Images194
6.1.2 Indexed Images197
6.1.3 IPT Functions for Manipulating RGB and Indexed Images199
6.2 Converting to Other Color Spaces204
6.2.1 NTSC Color Space204
6.2.2 The YCbCr Color Space205
6.2.3 The HSV Color Space205
6.2.4 The CMY and CMYK Color Spaces206
6.2.5 The HSI Color Space207
6.3 The Basics of Color Image Processing215
6.4 Color Transformations216
6.5 Spatial Filtering of Color Images227
6.5.1 Color Image Smoothing227
6.5.2 Color Image Sharpening230
6.6 Working Directly in RGB Vector Space231
6.6.1 Color Edge Detection Using the Gradient232
6.6.2 Image Segmentation in RGB Vector Space237
Summary241
7 Wavelets242
Preview242
7.1 Background242
7.2 The Fast Wavelet Transform245
7.2.1 FWTs Using the Wavelet Toolbox246
7.2.2 FWTs without the Wavelet Toolbox252
7.3 Working with Wavelet Decomposition Structures259
7.3.1 Editing Wavelet Decomposition Coefficients without the Wavelet Toolbox262
7.3.2 Displaying Wavelet Decomposition Coefficients266
7.4 The Inverse Fast Wavelet Transform271
7.5 Wavelets in Image Processing276
Summary281
8 Image Compression282
Preview282
8.1 Background283
8.2 Coding Redundancy286
8.2.1 Huffman Codes289
8.2.2 Huffman Encoding295
8.2.3 Huffman Decoding301
8.3 Interpixel Redundancy309
8.4 Psychovisual Redundancy315
8.5 JPEG Compression317
8.5.1 JPEG318
8.5.2 JPEG 2000325
Summary333
9 Morphological Image Processing334
Preview334
9.1 Preliminaries335
9.1.1 Some Basic Concepts from Set Theory335
9.1.2 Binary Images, Sets, and Logical Operators337
9.2 Dilation and Erosion337
9.2.1 Dilation338
9.2.2 Structuring Element Decomposition341
9.2.3 The strel Function341
9.2.4 Erosion345
9.3 Combining Dilation and Erosion347
9.3.1 Opening and Closing347
9.3.2 The Hit-or-Miss Transformation350
9.3.3 Using Lookup Tables353
9.3.4 Function bwmorph356
9.4 Labeling Connected Components359
9.5 Morphological Reconstruction362
9.5.1 Opening by Reconstruction363
9.5.2 Filling Holes365
9.5.3 Clearing Border Objects366
9.6 Gray-Scale Morphology366
9.6.1 Dilation and Erosion366
9.6.2 Opening and Closing369
9.6.3 Reconstruction374
Summary377
10 Image Segmentation378
Preview378
10.1 Point, Line, and Edge Detection379
10.1.1 Point Detection379
10.1.2 Line Detection381
10.1.3 Edge Detection Using Function edge384
10.2 Line Detection Using the Hough Transform393
10.2.1 Hough Transform Peak Detection399
10.2.2 Hough Transform Line Detection and Linking401
10.3 Thresholding404
10.3.1 Global Thresholding405
10.3.2 Local Thresholding407
10.4 Region-Based Segmentation407
10.4.1 Basic Formulation407
10.4.2 Region Growing408
10.4.3 Region Splitting and Merging412
10.5 Segmentation Using the Watershed Transform417
10.5.1 Watershed Segmentation Using the Distance Transform418
10.5.2 Watershed Segmentation Using Gradients420
10.5.3 Marker-Controlled Watershed Segmentation422
Summary425
11 Representation and Description426
Preview426
11.1 Background426
11.1.1 Cell Arrays and Structures427
11.1.2 Some Additional MATLAB and IPT Functions Used in This Chapter432
11.1.3 Some Basic Utility M-Functions433
11.2 Representation436
11.2.1 Chain Codes436
11.2.2 Polygonal Approximations Using Minimum-Perimeter Polygons439
11.2.3 Signatures449
11.2.4 Boundary Segments452
11.2.5 Skeletons453
11.3 Boundary Descriptors455
11.3.1 Some Simple Descriptors455
11.3.2 Shape Numbers456
11.3.3 Fourier Descriptors458
11.3.4 Statistical Moments462
11.4 Regional Descriptors463
11.4.1 Function regionprops463
11.4.2 Texture464
11.4.3 Moment Invariants470
11.5 Using Principal Components for Description474
Summary483
12 Object Recognition484
Preview484
12.1 Background484
12.2 Computing Distance Measures in MATLAB485
12.3 Recognition Based on Decision-Theoretic Methods488
12.3.1 Forming Pattern Vectors488
12.3.2 Pattern Matching Using Minimum-Distance Classifiers489
12.3.3 Matching by Correlation490
12.3.4 Optimum Statistical Classifiers492
12.3.5 Adaptive Learning Systems498
12.4 Structural Recognition498
12.4.1 Working with Strings in MATLAB499
12.4.2 String Matching508
Summary513
Appendix A Function Summary514
Appendix B ICE and MATLAB Graphical User Interfaces527
Appendix C M-Functions552
Bibliography594
Index597