图书介绍
非交换环初级教程 第2版 英文PDF|Epub|txt|kindle电子书版本下载
- (美)拉姆著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302241515
- 出版时间:2010
- 标注页数:385页
- 文件大小:15MB
- 文件页数:401页
- 主题词:非交换环-教材-英文
PDF下载
下载说明
非交换环初级教程 第2版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Wedderburn-Artin Theory1
1.Basic Terminology and Examples2
Exercises for §122
2.Semisimplicity25
Exercises for §229
3.Structure of Semisimple Rings30
Exercises for §345
CHAPTER 2 Jacobson Radical Theory48
4.The Jacobson Radical50
Exercises for §463
5.Jacobson Radical Under Change of Rings67
Exercises for §577
6.Group Rings and the J-Semisimplicity Problem78
Exercises for §698
CHAPTER 3 Introduction to Representation Theory101
7.Modules over Finite-Dimensional Algebras102
Exercises for §7116
8.Representations of Groups117
Exercises for §8137
9.Linear Groups141
Exercises for §9152
CHAPTER 4 Prime and Primitive Rings153
10.The Prime Radical;Prime and Semiprime Rings154
Exercises for §10168
11.Structure of Primitive Rings;the Density Theorem171
Exercises for §11188
12.Subdirect Products and Commutativity Theorems191
Exercises for §12198
CHAPTER 5 Introduction to Division Rings202
13.Division Rings203
Exercises for §13214
14.Some Classical Constructions216
Exercises for §14235
15.Tensor Products and Maximal Subfields238
Exercises for §15247
16.Polynomials over Division Rings248
Exercises for §16258
CHAPTER 6 Ordered Structures in Rings261
17.Orderings and Preorderings in Rings262
Exercises for §17269
18.Ordered Division Rings270
Exercises for §18276
CHAPTER 7 Local Rings,Semilocal Rings,and Idempotents279
19.Local Rings279
Exercises for §19293
20.Semilocal Rings296
Appendix:Endomorphism Rings of Uniserial Modules302
Exercises for §20306
21.Th Theory of Idempotents308
Exercises for §21322
22.Central Idempotents and Block Decompositions326
Exercises for §22333
CHAPTER 8 Perfect and Semiperfect Rings335
23.Perfect and Semiperfect Rings336
Exercises for §23346
24.Homological Characterizations of Perfect and Semiperfect Rings347
Exercises for §24358
25.Principal Indecomposables and Basic Rings359
Exercises for §25368
References370
Name Index373
Subject Index377