图书介绍
多元函数 第2版PDF|Epub|txt|kindle电子书版本下载
![多元函数 第2版](https://www.shukui.net/cover/15/30942488.jpg)
- (美)弗莱明著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:9787510027307
- 出版时间:2010
- 标注页数:412页
- 文件大小:46MB
- 文件页数:419页
- 主题词:多变量-函数-英文
PDF下载
下载说明
多元函数 第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Euclidean spaces1
1.1 The real number system2
1.2 Euclidean En5
1.3 Elementary geometry of En10
1.4 Basic topological notions in En14
1.5 Convex sets19
Chapter 2 Elementary topology of En28
2.1 Functions28
2.2 Limits and continuity of transformations31
2.3 Sequences in En37
2.4 Bolzano-Weierstrass theorem43
2.5 Relative neighborhoods,continuous transformations47
2.6 Topological spaces50
2.7 Connectedness56
2.8 Compactness60
2.9 Metric spaces62
2.10 Spaces of continuous functions67
2.11 Noneuclidean norms on En70
Chapter 3 Differentiation of real-valued functions76
3.1 Directional and partial derivatives76
3.2 Linear functions79
3.3 Differentiable functions82
3.4 Functions of class C(q)89
3.5 Relative extrema99
3.6 Convex and concave functions107
Chapter 4 Vector-valued functions of several variables119
4.1 Linear transformations119
4.2 Affine transformations125
4.3 Differentiable transformations128
4.4 Composition134
4.5 The inverse function theorem140
4.6 The implicit function theorem147
4.7 Manifolds153
4.8 The multiplier rule161
Chapter 5 Integration167
5.1 Intervals168
5.2 Measure170
5.3 Integrals over En181
5.4 Integrals over bounded sets186
5.5 Iterated integrals190
5.6 Integrals of continuous functions200
5.7 Change of measure under affine transformations206
5.8 Transformation of integrals209
5.9 Coordinate systems in En216
5.10 Measurable sets and functions;further properties222
5.11 Integrals:general definition,convergence theorems227
5.12 Differentiation under the integral sign237
5.13 Lp-spaces240
Chapter 6 Curves and line integrals245
6.1 Derivatives245
6.2 Curves in En247
6.3 Differential 1-forms253
6.4 Line integrals258
6.5 Gradient method265
6.6 Integrating factors;thermal systems268
Chapter 7 Exterior algebra and differential calculus275
7.1 Covectors and differential forms of degree 2276
7.2 Alternating multilinear functions283
7.3 Multicovectors287
7.4 Differential forms291
7.5 Multivectors295
7.6 Induced linear transformations306
7.7 Transformation law for differential forms309
7.8 The adjoint and codifferential311
7.9 Special results for n=3316
7.10 Integrating factors(continued)318
Chapter 8 Integration on manifolds321
8.1 Regular transformations322
8.2 Coordinate systems on manifolds329
8.3 Measure and integration on manifolds334
8.4 The divergence theorem340
8.5 Fluid flow350
8.6 Orientations353
8.7 Integrals of r-forms356
8.8 Stokess formula362
8.9 Regular transformations on submanifolds367
8.10 Closed and exact differential forms369
8.11 Motion ofa particle375
8.12 Motion of several particles380
Appendix 1 Axioms for a vector space383
Appendix 2 Mean value theorem;Taylors theorem385
Appendix 3 Review of Riemann integration386
Appendix 4 Monotone functions388
References389
Answers to problems391
Index405