图书介绍
FUNDAMENTALS OF STATISTICAL SIGNAL PROCESSING ESTIMATION THEORYPDF|Epub|txt|kindle电子书版本下载
- STEVEN M.KEY 著
- 出版社: Prentice Hall PTR
- ISBN:0133457117
- 出版时间:1993
- 标注页数:596页
- 文件大小:65MB
- 文件页数:609页
- 主题词:
PDF下载
下载说明
FUNDAMENTALS OF STATISTICAL SIGNAL PROCESSING ESTIMATION THEORYPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Estimation in Signal Processing1
1.2 The Mathematical Estimation Problem7
1.3 Assessing Estimator Performance9
1.4 Some Notes to the Reader12
2 Minimum Variance Unbiased Estimation15
2.1 Introduction15
2.2 Summary15
2.3 Unbiased Estimators16
2.4 Minimum Variance Criterion19
2.5 Existence of the Minimum Variance Unbiased Estimator20
2.6 Finding the Minimum Variance Unbiased Estimator21
2.7 Extension to a Vector Parameter22
3 Cramer-Rao Lower Bound27
3.1 Introduction27
3.2 Summary27
3.3 Estimator Accuracy Considerations28
3.4 Cramer-Rao Lower Bound30
3.5 General CRLB for Signals in White Gaussian Noise35
3.6 Transformation of Parameters37
3.7 Extension to a Vector Parameter39
3.8 Vector Parameter CRLB for Transformations45
3.9 CRLB for the General Gaussian Case47
3.10 Asymptotic CRLB for WSS Gaussian Random Processes50
3.11 Signal Processing Examples53
3A Derivation of Scalar Parameter CRLB67
3B Derivation of Vector Parameter CRLB70
3C Derivation of General Gaussian CRLB73
3D Derivation of Asymptotic CRLB77
4 Linear Models83
4.1 Introduction83
4.2 Summary83
4.3 Definition and Properties83
4.4 Linear Model Examples86
4.5 Extension to the Linear Model94
5 General Minimum Variance Unbiased Estimation101
5.1 Introduction101
5.2 Summary101
5.3 Sufficient Statistics102
5.4 Finding Sufficient Statistics104
5.5 Using Sufficiency to Find the MVU Estimator107
5.6 Extension to a Vector Parameter116
5A Proof of Neyman-Fisher Factorization Theorem (Scalar Parameter)127
5B Proof of Rao-Blackwell-Lehmann-Scheffe Theorem (Scalar Parameter)130
6 Best Linear Unbiased Estimators133
6.1 Introduction133
6.2 Summary133
6.3 Definition of the BLUE134
6.4 Finding the BLUE136
6.5 Extension to a Vector Parameter139
6.6 Signal Processing Example141
6A Derivation of Scalar BLUE151
6B Derivation of Vector BLUE153
7 Maximum Likelihood Estimation157
7.1 Introduction157
7.2 Summary157
7.3 An Example158
7.4 Finding the MLE162
7.5 Properties of the MLE164
7.6 MLE for Transformed Parameters173
7.7 Numerical Determination of the MLE177
7.8 Extension to a Vector Parameter182
7.9 Asymptotic MLE190
7.10 Signal Processing Examples191
7A Monte Carlo Methods205
7B Asymptotic PDF of MLE for a Scalar Parameter211
7C Derivation of Conditional Log-Likelihood for EM Algorithm Example214
8 Least Squares219
8.1 Introduction219
8.2 Summary219
8.3 The Least Squares Approach220
8.4 Linear Least Squares223
8.5 Geometrical Interpretations226
8.6 Order-Recursive Least Squares232
8.7 Sequential Least Squares242
8.8 Constrained Least Squares251
8.9 Nonlinear Least Squares254
8.10 Signal Processing Examples260
8A Derivation of Order-Recursive Least Squares282
8B Derivation of Recursive Projection Matrix285
8C Derivation of Sequential Least Squares286
9 Method of Moments289
9.1 Introduction289
9.2 Summary289
9.3 Method of Moments289
9.4 Extension to a Vector Parameter292
9.5 Statistical Evaluation of Estimators294
9.6 Signal Processing Example299
10 The Bayesian Philosophy309
10.1 Introduction309
10.2 Summary309
10.3 Prior Knowledge and Estimation310
10.4 Choosing a Prior PDF316
10.5 Properties of the Gaussian PDF321
10.6 Bayesian Linear Model325
10.7 Nuisance Parameters328
10.8 Bayesian Estimation for Deterministic Parameters330
10A Derivation of Conditional Gaussian PDF337
11 General Bayesian Estimators341
11.1 Introduction341
11.2 Summary341
11.3 Risk Functions342
11.4 Minimum Mean Square Error Estimators344
11.5 Maximum A Posteriori Estimators350
11.6 Performance Description359
11.7 Signal Processing Example365
11A Conversion of Continuous-Time System to Discrete-Time System375
12 Linear Bayesian Estimators379
12.1 Introduction379
12.2 Summary379
12.3 Linear MMSE Estimation380
12.4 Geometrical Interpretations384
12.5 The Vector LMMSE Estimator389
12.6 Sequential LMMSE Estimation392
12.7 Signal Processing Examples - Wiener Filtering400
12A Derivation of Sequential LMMSE Estimator415
13 Kalman Filters419
13.1 Introduction419
13.2 Summary419
13.3 Dynamical Signal Models420
13.4 Scalar Kalman Filter431
13.5 Kalman Versus Wiener Filters442
13.6 Vector Kalman Filter446
13.7 Extended Kalman Filter449
13.8 Signal Processing Examples452
13A Vector Kalman Filter Derivation471
13B Extended Kalman Filter Derivation476
14 Summary of Estimators479
14.1 Introduction479
14.2 Estimation Approaches479
14.3 Linear Model486
14.4 Choosing an Estimator489
15 Extensions for Complex Data and Parameters493
15.1 Introduction493
15.2 Summary493
15.3 Complex Data and Parameters494
15.4 Complex Random Variables and PDFs500
15.5 Complex WSS Random Processes513
15.6 Derivatives,Gradients,and Optimization517
15.7 Classical Estimation with Complex Data524
15.8 Bayesian Estimation532
15.9 Asymptotic Complex Gaussian PDF535
15.10Signal Processing Examples539
15A Derivation of Properties of Complex Covariance Matrices555
15B Derivation of Properties of Complex Gaussian PDF558
15C Derivation of CRLB and MLE Formulas563
A1 Review of Important Concepts567
A1.1 Linear and Matrix Algebra567
A1.2 Probability,Random Processes,and Time Series Models574
A2 Glossary of Symbols and Abbreviations583
INDEX589