图书介绍

数理金融初步 原书第3版 英文版PDF|Epub|txt|kindle电子书版本下载

数理金融初步 原书第3版 英文版
  • (美)罗斯(SHELDONM.ROSS)著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:9787111433026
  • 出版时间:2013
  • 标注页数:307页
  • 文件大小:38MB
  • 文件页数:320页
  • 主题词:金融学-数理经济学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

数理金融初步 原书第3版 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Probability1

1.1 Probabilities and Events1

1.2 Conditional Probability5

1.3 Random Variables and Expected Values9

1.4 Covariance and Correlation14

1.5 Conditional Expectation16

1.6 Exercises17

2 Normal Random Variables22

2.1 Continuous Random Variables22

2.2 Normal Random Variables22

2.3 Properties of Normal Random Variables26

2.4 The Central Limit Theorem29

2.5 Exercises31

3 Brownian Motion and Geometric Brownian Motion34

3.1 Brownian Motion34

3.2 Brownian Motion as a Limit of Simpler Models35

3.3 Geometric Brownian Motion38

3.3.1 Geometric Brownian Motion as a Limit of Simpler Models40

3.4 The Maximum Variable40

3.5 The Cameron-Martin Theorem45

3.6 Exercises46

4 Interest Rates and Present Value Analysis48

4.1 Interest Rates48

4.2 Present Value Analysis52

4.3 Rate of Return62

4.4 Continuously Varying Interest Rates65

4.5 Exercises67

5 Pricing Contracts via Arbitrage73

5.1 An Example in Options Pricing73

5.2 Other Examples of Pricing via Arbitrage77

5.3 Exercises86

6 The Arbitrage Theorem92

6.1 The Arbitrage Theorem92

6.2 The Mulfiperiod Binomial Model96

6.3 Proof of the Arbitrage Theorem98

6.4 Exercises102

7 The Black-Scholes Formula106

7.1 Introduction106

7.2 The Black-Scholes Formula106

7.3 Properties of the Black-Scholes Option Cost110

7.4 The Delta Hedging Arbitrage Strategy113

7.5 Some Derivations118

7.5.1 The Black-Scholes Formula119

7.5.2 The Partial Derivatives121

7.6 European Put Options126

7.7 Exercises127

8 Additional Results on Options131

8.1 Introduction131

8.2 Call Options on Dividend-Paying Securities131

8.2.1 The Dividend for Each Share of the Security Is Paid Continuously in Time at a Rate Equal to a Fixed Fraction f of the Price of the Security132

8.2.2 For Each Share Owned, a Single Payment of fS(td) Is Made at Time td133

8.2.3 For Each Share Owned, a Fixed Amount D Is to Be Paid at Time td134

8.3 Pricing American Put Options136

8.4 Adding Jumps to Geometric Brownian Motion142

8.4.1 When the Jump Distribution Is Lognormal144

8.4.2 When the Jump Distribution Is General146

8.5 Estimating the Volatility Parameter148

8.5.1 Estimating a Population Mean and Variance149

8.5.2 The Standard Estimator of Volatility150

8.5.3 Using Opening and Closing Data152

8.5.4 Using Opening, Closing, and High-Low Data153

8.6 Some Comments155

8.6.1 When the Option Cost Differs from the Black-Scholes Formula155

8.6.2 When the Interest Rate Changes156

8.6.3 Final Comments156

8.7 Appendix158

8.8 Exercises159

9 Valuing by Expected Utility165

9.1 Limitations of Arbitrage Pricing165

9.2 Valuing Investments by Expected Utility166

9.3 The Portfolio Selection Problem174

9.3.1 Estimating Covariances184

9.4 Value at Risk and Conditional Value at Risk184

9.5 The Capital Assets Pricing Model187

9.6 Rates of Return: Single-Period and Geometric Brownian Motion188

9.7 Exercises190

10 Stochastic Order Relations193

10.1 First-Order Stochastic Dominance193

10.2 Using Coupling to Show Stochastic Dominance196

10.3 Likelihood Ratio Ordering198

10.4 A Single-Period Investment Problem199

10.5 Second-Order Dominance203

10.5.1 Normal Random Variables204

10.5.2 More on Second-Order Dominance207

10.6 Exercises210

11 Optimization Models212

11.1 Introduction212

11.2 A Deterministic Optimization Model212

11.2.1 A General Solution Technique Based on Dynamic Programming213

11.2.2 A Solution Technique for Concave Return Functions215

11.2.3 The Knapsack Problem219

11.3 Probabilistic Optimization Problems221

11.3.1 A Gambling Model with Unknown Win Probabilities221

11.3.2 An Investment Allocation Model222

11.4 Exercises225

12 Stochastic Dynamic Programming228

12.1 The Stochastic Dynamic Programming Problem228

12.2 Infinite Time Models234

12.3 Optimal Stopping Problems239

12.4 Exercises244

13 Exotic Options247

13.1 Introduction247

13.2 Barrier Options247

13.3 Asian and Lookback Options248

13.4 Monte Carlo Simulation249

13.5 Pricing Exotic Options by Simulation250

13.6 More Efficient Simulation Estimators252

13.6.1 Control and Antithetic Variables in the Simulation of Asian and Lookback Option Valuations253

13.6.2 Combining Conditional Expectation and Importance Sampling in the Simulation of Barrier Option Valuations257

13.7 Options with Nonlinear Payoffs258

13.8 Pricing Approximations via Multiperiod Binomial Models259

13.9 Continuous Time Approximations of Barrier and Lookback Options261

13.10 Exercises262

14 Beyond Geometric Brownian Motion Models265

14.1 Introduction265

14.2 Crude Oil Data266

14.3 Models for the Crude Oil Data272

14.4 Final Comments274

15 Autoregressive Models and Mean Reversion285

15.1 The Autoregressive Model285

15.2 Valuing Options by Their Expected Return286

15.3 Mean Reversion289

15.4 Exercises291

Index303

热门推荐